977 research outputs found
Eluate derived by extracorporal antibody-based immunoadsorption elevates the cytosolic Ca2+ concentration in podocytes via B-2 kinin receptors
Background/Aim: Patients with idiopathic focal segmental glomerulosclerosis (FSGS) often develop a recurrence of the disease after kidney transplantation. In a number of FSGS patients, plasmapheresis and immunoadsorption procedures have been shown to transiently reduce proteinuria and are thought to do this by eliminating a circulating factor. Direct cellular effects of eluates from immunoadsorption procedures on podocytes, the primary target of injury in FSGS, have not yet been reported. Methods: Eluates were derived from antibody-based immunoadsorption of a patient suffering from primary FSGS, a patient with systemic lupus erythematosus, and a healthy volunteer. The cytosolic free Ca2+ concentration ({[}Ca2+](i)) of differentiated podocytes was measured by single-cell fura-2 microfluorescence measurements. Free and total immunoreactive kinin levels were measured by radioimmunoassay. Results: FSGS eluates increased the {[}Ca2+](i) levels concentration dependently (EC50 0.14 mg/ml; n = 3-19). 1 mg/ml eluate increased the {[}Ca2+](i) values reversibly from 82 +/- 12 to 1,462 +/- 370 nmol/l, and then they returned back to 100 16 nmol/l (n = 19). The eluate-induced increase of {[}Ca2+](i) consisted of an initial Ca2+ peak followed by a Ca2+ plateau which depended on the extracellular Ca2+ concentration. The eluate-induced increase of {[}Ca2+](i) was inhibited by the specific B-2 kinin receptor antagonist Hoe 140 in a concentration-dependent manner (IC50 2.47 nmol/l). In addition, prior repetitive application of bradykinin desensitized the effect of eluate on {[}Ca2+](i). A colonic epithelial cell line not reacting to bradykinin did not respond to eluate either (n = 6). Similar to FSGS eluates, the eluate preparations of both the systemic lupus patient and the healthy volunteer led to a biphasic, concentration-dependent {[}Ca2+](i) increase in poclocytes which again was inhibited by Hoe 140. Free kinins were detected in all eluate preparations. Conclusion: The procedure of antibody-based immunoadsorption leads to kinin in the eluate which elevates the {[}Ca2+](i) level of podocytes via B-2 kinin receptors. Copyright (C) 2002 S. Karger AG, Basel
A mosaic maternal splice donor mutation in the EHMT1 gene leads to aberrant transcripts and to Kleefstra syndrome in the offspring
The euchromatic histone-lysine N-methyltransferase 1 (EHMT1) gene was examined in a 3-year-old boy with characteristic clinical features of Kleefstra syndrome. Sequencing of all 27 EHMT1 exons revealed a novel mutation, NM_024757.4:c.2712+1G>A, which affects the splice donor of intron 18. Whereas the index patient is heterozygous for that mutation, his phenotypically normal mother shows tissue-specific mosaicism. Sequencing of EHMT1 RT-PCR products revealed two aberrant transcript variants: in one variant, exon 18 was skipped; in the other, a near-by GT motif was used as splice donor and intronic sequence was inserted between exons 18 and 19. Both transcript variants were found in the patient and his mother. The latter had lower amounts of these transcripts consistent with mosaic status. This is the first description of an EHMT1 point mutation being inherited from a parent with verified mosaicism. The constitutive c.2712+1G>A splice site mutation in EHMT1 is fully pathogenic, and the transcript variants produced do not attenuate the severity of the disease.European Journal of Human Genetics advance online publication, 12 December 2012; doi:10.1038/ejhg.2012.267
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium
Rheumatoid arthritis (RA) is a destructive and chronic autoimmune inflammatory disease. Synovial inflammation is a major feature of RA and is associated with leukocyte recruitment. Leukocytes cross the endothelial cells (ECs) into the synovial tissue and fluid and this migration is mediated via a range of chemokines and adhesion molecules on the ECs. As important mediators of leukocyte extravasation, a number of chemokines from each of the chemokine families have been established as expressed in the RA joint. However, as little information is available on which chemokines are expressed/presented by the ECs themselves, the purpose of the study was to ascertain which of the CC chemokines were localised in RA ECs. Immunofluoresence was used to assess the presence of the CC-family chemokines in RA synovial ECs using von-Willebrand factor (VWF) as a pan-endothelial marker and a range of human chemokine antibodies. The percentage of VWF positive vessels which were positive for the chemokines was determined. The presence of the four most highly expressed novel chemokines were further investigated in non-RA synovial ECs and the sera and synovial fluid (SF) from patients with RA and osteoarthritis (OA). Statistical analysis of immunofluorescence data was carried out by Student's t-test. For analysis of ELISA data, Kruskal-Wallis ANOVA followed by Dunn's multiple comparison test was utilised to analyse differences in sera and SF levels for each chemokine between RA and OA. Spearman rank correlations of sera and SF chemokine levels with a range of clinical variables were also performed. Chemokine detection varied, the least abundant being CCL27 which was present in 8.3% of RA blood vessels and the most abundant being CCL19 which was present in 80%. Of the 26 chemokines studied, 19 have not been previously observed in RA ECs. Four of these novel chemokines, namely CCL7, CCL14, CCL16 and CCL22 were present on ≥60% of vessels. CCL14 and CCL22 were shown to be increased in RA ECs compared to non-RA ECs, p=0.0041 and p=0.014 respectively. EC chemokines CCL7, CCL14, CCL16 and CCL22 also occurred in RA synovial fluid and sera as established by ELISA. CCL7 was shown to be significantly increased in sera and SF from RA patients compared to that from osteoarthritis (OA) patients (p<0.01), and to have a highly significant correlation with the level of anti-CCP (R=0.93, p=0.001). Less abundant chemokines shown to be present in RA ECs were CCL1-3, CCL5, CCL10-13, CCL15, CCL17, CCL18, CCL20, CCL21 and CCL23-28. In conclusion, this initial study is the first to show the presence of a number of CC chemokines in RA ECs. It provides evidence that further validation and investigation into the presence and functionality of these novel chemokines expressed at RA synovial ECs may be warranted
Sharper and Simpler Nonlinear Interpolants for Program Verification
Interpolation of jointly infeasible predicates plays important roles in
various program verification techniques such as invariant synthesis and CEGAR.
Intrigued by the recent result by Dai et al.\ that combines real algebraic
geometry and SDP optimization in synthesis of polynomial interpolants, the
current paper contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations in
real algebraic geometry; and our continued fraction-based algorithm that rounds
off (potentially erroneous) numerical solutions of SDP solvers. Experiment
results support our tool's effectiveness; we also demonstrate the benefit of
sharp and simple interpolants in program verification examples
Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix
We consider a symmetric matrix, the entries of which depend linearly on some
parameters. The domains of the parameters are compact real intervals. We
investigate the problem of checking whether for each (or some) setting of the
parameters, the matrix is positive definite (or positive semidefinite). We
state a characterization in the form of equivalent conditions, and also propose
some computationally cheap sufficient\,/\,necessary conditions. Our results
extend the classical results on positive (semi-)definiteness of interval
matrices. They may be useful for checking convexity or non-convexity in global
optimization methods based on branch and bound framework and using interval
techniques
A misplaced lncRNA causes brachydactyly in humans
Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH) gene by disrupting the cis-regulatory landscape. Using chromosome conformation capturing, we identified a regulator on chromosome 12q that interacts in cis with PTHLH over a 24.4-megabase distance and in trans with the sex-determining region Y-box 9 (SOX9) gene on chromosome 17q. The element also harbored a long noncoding RNA (lncRNA). Silencing of the lncRNA, PTHLH, or SOX9 revealed a feedback mechanism involving an expression-dependent network in humans. In the BDE patients, the human lncRNA was upregulated by the disrupted chromosomal association. Moreover, the lncRNA occupancy at the PTHLH locus was reduced. Our results document what we believe to be a novel in cis- and in trans-acting DNA and lncRNA regulatory feedback element that is reciprocally regulated by coding genes. Furthermore, our findings provide a systematic and combinatorial view of how enhancers encoding lncRNAs may affect gene expression in normal development
Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression
Sepsis is characterized by a dysregulated immune response, metabolic derangements and bioenergetic failure. These alterations are closely associated with a profound and persisting mitochondrial dysfunction. This however occurs despite increased expression of the nuclear-encoded transcription factor A (TFAM) that normally supports mitochondrial biogenesis and functional recovery. Since this paradox may relate to an altered intracellular distribution of TFAM in sepsis, we tested the hypothesis that enhanced extramitochondrial TFAM expression does not translate into increased intramitochondrial TFAM abundance. Accordingly, we prospectively analyzed PBMCs both from septic patients (n = 10) and lipopolysaccharide stimulated PBMCs from healthy volunteers (n = 20). Extramitochondrial TFAM protein expression in sepsis patients was 1.8-fold greater compared to controls (p = 0.001), whereas intramitochondrial TFAM abundance was approximate 80% less (p < 0.001). This was accompanied by lower mitochondrial DNA copy numbers (p < 0.001), mtND1 expression (p < 0.001) and cellular ATP content (p < 0.001) in sepsis patients. These findings were mirrored in lipopolysaccharide stimulated PBMCs taken from healthy volunteers. Furthermore, TFAM-TFB2M protein interaction within the human mitochondrial core transcription initiation complex, was 74% lower in septic patients (p < 0.001). In conclusion, our findings, which demonstrate a diminished mitochondrial TFAM abundance in sepsis and endotoxemia, may help to explain the paradox of lacking bioenergetic recovery despite enhanced TFAM expression
A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis.
Primary focal segmental glomerulosclerosis (FSGS) is a disease with poor prognosis and high unmet therapeutic need. Here, we evaluated the safety and pharmacokinetics of single-dose infusions of fresolimumab, a human monoclonal antibody that inactivates all forms of transforming growth factor-β (TGF-β), in a phase I open-label, dose-ranging study. Patients with biopsy-confirmed, treatment-resistant, primary FSGS with a minimum estimated glomerular filtration rate (eGFR) of 25  ml/min per 1.73  m(2), and a urine protein to creatinine ratio over 1.8  mg/mg were eligible. All 16 patients completed the study in which each received one of four single-dose levels of fresolimumab (up to 4  mg/kg) and was followed for 112 days. Fresolimumab was well tolerated with pustular rash the only adverse event in two patients. One patient was diagnosed with a histologically confirmed primitive neuroectodermal tumor 2 years after fresolimumab treatment. Consistent with treatment-resistant FSGS, there was a slight decline in eGFR (median decline baseline to final of 5.85 ml/min per 1.73  m(2)). Proteinuria fluctuated during the study with the median decline from baseline to final in urine protein to creatinine ratio of 1.2  mg/mg with all three Black patients having a mean decline of 3.6  mg/mg. The half-life of fresolimumab was ∼14 days, and the mean dose-normalized Cmax and area under the curve were independent of dose. Thus, single-dose fresolimumab was well tolerated in patients with primary resistant FSGS. Additional evaluation in a larger dose-ranging study is necessary
Antimicrobial guidelines in clinical practice: incorporating the ethical perspective
Introduction: Guidelines on antimicrobial therapy are subject to periodic revision to anticipate changes in the epidemiology of antimicrobial resistance and new scientific knowledge. Changing a policy to a broader spectrum has important consequences on both the individual patient level (e.g. effectiveness, toxicity) and population level (e.g. emerging resistance, costs). By combining both clinical data evaluation and an ethical analysis, we aim to propose a comprehensive framework to guide antibiotic policy dilemmas.Methods: A preliminary framework for decision-making on antimicrobial policy was constructed based on existing literature and panel discussions. Antibiotic policy themes were translated into specific elements that were fitted into this framework. The adapted framework was evaluated in two moral deliberation groups. The moral deliberation sessions were analysed using ATLAS.ti statistical software to categorize arguments and evaluate completeness of the final framework.Results: The final framework outlines the process of data evaluation, ethical deliberation and decision-making. The first phase is a factual data exploration. In the second phase, perspectives are weighed and the policy of moral preference is formulated. Judgments are made on three levels: the individual patient, the patient population and society. In the final phase, feasibility, implementation and re-evaluation are addressed.Conclusions: The proposed framework facilitates decision-making on antibiotic policy by structuring existing data, identifying knowledge gaps, explicating ethical considerations and balancing interests of the individual and current and future generations.Immunogenetics and cellular immunology of bacterial infectious disease
- …