1,879 research outputs found
Video camera system for locating bullet holes in targets at a ballistics tunnel
A system consisting of a single charge coupled device (CCD) video camera, computer controlled video digitizer, and software to automate the measurement was developed to measure the location of bullet holes in targets at the International Shooters Development Fund (ISDF)/NASA Ballistics Tunnel. The camera/digitizer system is a crucial component of a highly instrumented indoor 50 meter rifle range which is being constructed to support development of wind resistant, ultra match ammunition. The system was designed to take data rapidly (10 sec between shoots) and automatically with little operator intervention. The system description, measurement concept, and procedure are presented along with laboratory tests of repeatability and bias error. The long term (1 hour) repeatability of the system was found to be 4 microns (one standard deviation) at the target and the bias error was found to be less than 50 microns. An analysis of potential errors and a technique for calibration of the system are presented
Structures and materials technology issues for reusable launch vehicles
Projected space missions for both civil and defense needs require significant improvements in structures and materials technology for reusable launch vehicles: reductions in structural weight compared to the Space Shuttle Orbiter of up to 25% or more, a possible factor of 5 or more increase in mission life, increases in maximum use temperature of the external surface, reusable containment of cryogenic hydrogen and oxygen, significant reductions in operational costs, and possibly less lead time between technology readiness and initial operational capability. In addition, there is increasing interest in hypersonic airbreathing propulsion for launch and transmospheric vehicles, and such systems require regeneratively cooled structure. The technology issues are addressed, giving brief assessments of the state-of-the-art and proposed activities to meet the technology requirements in a timely manner
On the vanishing viscosity limit in a disk
We say that the solution u to the Navier-Stokes equations converges to a
solution v to the Euler equations in the vanishing viscosity limit if u
converges to v in the energy norm uniformly over a finite time interval.
Working specifically in the unit disk, we show that a necessary and sufficient
condition for the vanishing viscosity limit to hold is the vanishing with the
viscosity of the time-space average of the energy of u in a boundary layer of
width proportional to the viscosity due to modes (eigenfunctions of the Stokes
operator) whose frequencies in the radial or the tangential direction lie
between L and M. Here, L must be of order less than 1/(viscosity) and M must be
of order greater than 1/(viscosity)
Investigation of Problems Associated with the Use of Alloyed Molybdenum Sheet in Structures at Elevated Temperatures
The results of an experimental study to explore the capabilities and limitations of thin Mo-0.5Ti molybdenum-alloy sheet for structural applications at high temperatures are presented. Evaluation tests at temperatures ranging from room temperature,to 3000 F were made on resistance-welded corrugated-core sandwiches that were coated with a commercially available oxidation resistant coating known as W-2 and on coated oxidation and tensile specimens. The performance of the corrugated-core sandwiches in compressive strength and static oxidation tests, tensile properties of the coated molybdenum sheet, and the life of the coated specimens in static oxidation tests are given. A description of the equipment and procedures utilized in performing the evaluation tests is included
Noise in Electron Devices
Contains research objectives and reports on two research projects
Noise in Electron Devices
Contains research objectives and reports on one research project.Lincoln Laboratory, Purchase Order DDL B-00368U. S. Air Force under Air Force Contract AF19(604)-7400U. S. NavyU. S. Arm
In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal are shown, as well as cortical and trabecular bone of the distal femur and proximal tibia. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.ER
Tautness for riemannian foliations on non-compact manifolds
For a riemannian foliation on a closed manifold , it is
known that is taut (i.e. the leaves are minimal submanifolds) if
and only if the (tautness) class defined by the mean curvature form
(relatively to a suitable riemannian metric ) is zero. In the
transversally orientable case, tautness is equivalent to the non-vanishing of
the top basic cohomology group , where n = \codim
\mathcal{F}. By the Poincar\'e Duality, this last condition is equivalent to
the non-vanishing of the basic twisted cohomology group
, when is oriented. When is
not compact, the tautness class is not even defined in general. In this work,
we recover the previous study and results for a particular case of riemannian
foliations on non compact manifolds: the regular part of a singular riemannian
foliation on a compact manifold (CERF).Comment: 18 page
Cohomological tautness for Riemannian foliations
In this paper we present some new results on the tautness of Riemannian
foliations in their historical context. The first part of the paper gives a
short history of the problem. For a closed manifold, the tautness of a
Riemannian foliation can be characterized cohomologically. We extend this
cohomological characterization to a class of foliations which includes the
foliated strata of any singular Riemannian foliation of a closed manifold
Modified differentials and basic cohomology for Riemannian foliations
We define a new version of the exterior derivative on the basic forms of a
Riemannian foliation to obtain a new form of basic cohomology that satisfies
Poincar\'e duality in the transversally orientable case. We use this twisted
basic cohomology to show relationships between curvature, tautness, and
vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad
- …