18 research outputs found
A scattered landscape: assessment of the evidence base for 71 patient decision aids developed in a hospital setting
Background Recent publications reveal shortcomings in evidence review and summarization methods for patient decision aids. In the large-scale "Share to Care (S2C)" Shared Decision Making (SDM) project at the University Hospital Kiel, Germany, one of 4 SDM interventions was to develop up to 80 decision aids for patients. Best available evidence on the treatments' impact on patient-relevant outcomes was systematically appraised to feed this information into the decision aids. Aims of this paper were to (1) describe how PtDAs are developed and how S2C evidence reviews for each PtDA are conducted, (2) appraise the quality of the best available evidence identified and (3) identify challenges associated with identified evidence. Methods The quality of the identified evidence was assessed based on GRADE quality criteria and categorized into high-, moderate-, low-, very low-quality evidence. Evidence appraisal was conducted across all outcomes assessed in an evidence review and for specific groups of outcomes, namely mortality, morbidity, quality of life, and treatment harms. Challenges in evidence interpretation and summarization resulting from the characteristics of decision aids and the type and quality of evidence are identified and discussed. Conclusions Evidence reviews in this project were carefully conducted and summarized. However, the evidence identified for our decision aids was indeed a "scattered landscape" and often poor quality. Facing a high prevalence of low-quality, non-directly comparative evidence for treatment alternatives doesn't mean it is not necessary to choose an evidence-based approach to inform patients. While there is an urgent need for high quality comparative trials, best available evidence nevertheless has to be appraised and transparently communicated to patients
Making shared decision-making (SDM) a reality: protocol of a large-scale long-term SDM implementation programme at a Northern German University Hospital
Introduction: Shared decision-making (SDM) is not yet widely used when making decisions in German hospitals. Making SDM a reality is a complex task. It involves training healthcare professionals in SDM communication and enabling patients to actively participate in communication, in addition to providing sound, easy to understand information on treatment alternatives in the form of evidence-based patient decision aids (EbPDAs). This project funded by the German Innovation Fund aims at designing, implementing and evaluating a multicomponent, large-scale and integrative SDM programme-called SHARE TO CARE (S2C)-at all clinical departments of a University Hospital Campus in Northern Germany within a 4-year time period. Methods and analysis S2C tackles the aforementioned components of SDM: (1) training physicians in SDM communication, (2) activating and empowering patients, (3) developing EbPDAs in the most common/relevant diseases and (4) training other healthcare professionals in SDM coaching. S2C is designed together with patients and providers. The physicians' training programme entails an online and an in situ training module. The decision coach training is based on a similar but less comprehensive approach. The development of online EbPDAs follows the International Patient Decision Aid Standards and includes written, graphical and video-based information. Validated outcomes of SDM implementation are measured in a preintervention and postintervention evaluation design. Process evaluation accompanies programme implementation. Health economic impact of the intervention is investigated using a propensity-score-matched approach based on potentially preference-sensitive hospital decisions. Ethics and dissemination Ethics committee review approval has been obtained from Medical Ethics Committee of the Medical Faculty of the Christian-Albrechts-University Kiel. Project information and results will be disseminated at conferences, on project-hosted websites at University Hospital Medical Center Schleswig Holstein and by S2C as well as in peer-reviewed and professional journals
Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become common place and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider howconservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further exploreways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmenta lmanagement and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments
Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests
Erratum to: Methods for evaluating medical tests and biomarkers
[This corrects the article DOI: 10.1186/s41512-016-0001-y.]
Screening for sickle cell disease in newborns: a systematic review
Background!#!Sickle cell disease (SCD) is an inherited autosomal recessive disorder caused by the replacement of normal haemoglobin (HbA) by mutant Hb (sickle Hb, HbS). The sickle-shaped red blood cells lead to haemolysis and vaso-occlusion. Especially in the first years of life, patients with SCD are at high risk of life-threatening complications. SCD prevalence shows large regional variations; the disease predominantly occurs in sub-Saharan Africa. We aimed to systematically assess the evidence on the benefit of newborn screening for SCD followed by an earlier treatment start.!##!Methods!#!We systematically searched bibliographic databases (MEDLINE, EMBASE, Cochrane Databases, and the Health Technology Assessment Database), trial registries, and other sources to identify systematic reviews and randomised controlled trials (RCTs) or non-randomised trials on newborn screening for SCD. The last search was in 07/2020. Two reviewers independently reviewed abstracts and full-text articles and assessed the risk of bias of the studies included. Data were extracted by one person and checked by another. As meta-analyses were not possible, a qualitative summary of results was performed.!##!Results!#!We identified 1 eligible study with direct evidence: a Jamaican retrospective study evaluating newborn screening for SCD followed by preventive measures (prevention of infections and education of parents). The study included 500 patients with SCD (intervention group, 395; historical control group, 105). Although the results showed a high risk of bias, the difference between the intervention and the control group was very large: mortality in children decreased by a factor of about 10 in the first 5 years of life (0.02% in the intervention group vs. 0.19% in the control group, odds ratio 0.09; 95% confidence interval [0.04; 0.22], p < 0.001).!##!Conclusion!#!The results are based on a single retrospective study including historical controls. However, the decrease of mortality by a factor of 10 is unlikely to be explained by bias alone. Therefore, in terms of mortality, data from this single retrospective study included in our systematic review suggest a benefit of newborn screening for SCD (followed by preventive measures) versus no newborn screening for SCD (weak certainty of conclusions)