14 research outputs found

    Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells

    Get PDF
    Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties

    Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells

    Get PDF
    Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties

    Endothelial dysfunction is an early indicator of sepsis and neutrophil degranulation of septic shock in surgical patients

    Get PDF
    Producción CientíficaBackground: Stratification of the severity of infection is currently based on the Sequential Organ Failure Assessment (SOFA) score, which is difficult to calculate outside the ICU. Biomarkers could help to stratify the severity of infection in surgical patients. Methods: Levels of ten biomarkers indicating endothelial dysfunction, 22 indicating emergency granulopoiesis, and six denoting neutrophil degranulation were compared in three groups of patients in the first 12 h after diagnosis at three Spanish hospitals. Results: There were 100 patients with infection, 95 with sepsis and 57 with septic shock. Seven biomarkers indicating endothelial dysfunction (mid-regional proadrenomedullin (MR-ProADM), syndecan 1, thrombomodulin, angiopoietin 2, endothelial cell-specific molecule 1, vascular cell adhesion molecule 1 and E-selectin) had stronger associations with sepsis than infection alone. MR-ProADM had the highest odds ratio (OR) in multivariable analysis (OR 11·53, 95 per cent c.i. 4·15 to 32·08; P = 0·006) and the best area under the curve (AUC) for detecting sepsis (0·86, 95 per cent c.i. 0·80 to 0·91; P < 0·001). In a comparison of sepsis with septic shock, two biomarkers of neutrophil degranulation, proteinase 3 (OR 8·09, 1·34 to 48·91; P = 0·028) and lipocalin 2 (OR 6·62, 2·47 to 17·77; P = 0·002), had the strongest association with septic shock, but lipocalin 2 exhibited the highest AUC (0·81, 0·73 to 0·90; P < 0·001). Conclusion: MR-ProADM and lipocalin 2 could be alternatives to the SOFA score in the detection of sepsis and septic shock respectively in surgical patients with infection.Instituto de Salud Carlos III (grants PI15/01959, PI15/01451 and PI16/01156

    Modelos de riesgo para la predicción de mortalidad hospitalaria en ancianos con neumonía por COVID-19

    Get PDF
    Producción CientíficaObjetivo. Los objetivos son comparar la utilidad pronóstica de tres escalas de gravedad (Pneumonia Severity Index: PSI; CURB-65 scale; Severity Community Acquired Pneumonia Score: SCAP) y diseñar un nuevo modelo predictivo de mortalidad hospitalaria en pacientes mayores de 75 años ingresados por neumonía por COVID-19. Método. Estudio retrospectivo de pacientes mayores de 75 años ingresados por neumonía por COVID-19 desde el servicio de urgencias entre el 12 de marzo y el 27 de abril de 2020. Se recogieron variables demográficas (edad, sexo, institucionalización), clínicas (síntomas, comorbilidades, índice de Charlson) y analíticas (bioquímica en suero, gasometría, hematimetría, hemostasia). Se derivó un modelo de riesgo y se compararon las escalas de gravedad PSI, CURB-65 y SCAP para predecir la mortalidad intrahospitalaria por cualquier causa. Resultados. Se incluyeron 186 pacientes, con una mediana de edad de 85 años (RIC 80-89), un 44,1% varones. La mortalidad fue del 47,3%. Las escalas PSI, CURB-65 y SCAP tuvieron un área bajo la curva (ABC) de 0,74 (IC 95% 0,64-0,82), 0,71 (IC 95% 0,62-0,79) y 0,72 (IC 95% 0,63-0,81), respectivamente. El modelo predictivo compuesto por la ausencia o presencia de síntomas (tos y disnea), comorbilidad (índice de Charlson) y datos analíticos (aspartato-aminotransferasa, potasio, urea y lactato-deshidrogenasa) tuvo un ABC de 0,81 (IC 95% 0,73-0,88). Conclusión. Este estudio muestra que la escala PSI tiene una capacidad predictiva de mortalidad moderada, notablemente mejor que las escalas CURB-65 y SCAP. Se propone un nuevo modelo predictivo de mortalidad que mejora significativamente el rendimiento de estas escalas, siendo necesario verificar su validez externa.Junta de Castilla y León (project GRS COVID 09/A/2020)Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación, cofinanciada por el Fondo Social Europeo (grant RYC2019-028566-I)Gerencia Regional de Salud de Castilla y León (grant INT/M/15/20

    Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID‑19

    Get PDF
    Background. COVID-19 can course with respiratory and extrapulmonary disease. SARS-CoV-2 RNA is detected in respiratory samples but also in blood, stool and urine. Severe COVID-19 is characterized by a dysregulated host response to this virus. We studied whether viral RNAemia or viral RNA load in plasma is associated with severe COVID-19 and also to this dysregulated response. Methods. A total of 250 patients with COVID-19 were recruited (50 outpatients, 100 hospitalized ward patients and 100 critically ill). Viral RNA detection and quantification in plasma was performed using droplet digital PCR, targeting the N1 and N2 regions of the SARS-CoV-2 nucleoprotein gene. The association between SARS-CoV-2 RNAemia and viral RNA load in plasma with severity was evaluated by multivariate logistic regression. Correlations between viral RNA load and biomarkers evidencing dysregulation of host response were evaluated by calculating the Spearman correlation coefficients. Results. The frequency of viral RNAemia was higher in the critically ill patients (78%) compared to ward patients (27%) and outpatients (2%) (p < 0.001). Critical patients had higher viral RNA loads in plasma than non-critically ill patients, with non-survivors showing the highest values. When outpatients and ward patients were compared, viral RNAemia did not show significant associations in the multivariate analysis. In contrast, when ward patients were compared with ICU patients, both viral RNAemia and viral RNA load in plasma were associated with critical illness (OR [CI 95%], p): RNAemia (3.92 [1.183–12.968], 0.025), viral RNA load (N1) (1.962 [1.244–3.096], 0.004); viral RNA load (N2) (2.229 [1.382–3.595], 0.001). Viral RNA load in plasma correlated with higher levels of chemokines (CXCL10, CCL2), biomarkers indicative of a systemic inflammatory response (IL-6, CRP, ferritin), activation of NK cells (IL-15), endothelial dysfunction (VCAM-1, angiopoietin-2, ICAM-1), coagulation activation (D-Dimer and INR), tissue damage (LDH, GPT), neutrophil response (neutrophils counts, myeloperoxidase, GM-CSF) and immunodepression (PD-L1, IL-10, lymphopenia and monocytopenia). Conclusions. SARS-CoV-2 RNAemia and viral RNA load in plasma are associated with critical illness in COVID-19. Viral RNA load in plasma correlates with key signatures of dysregulated host responses, suggesting a major role of uncontrolled viral replication in the pathogenesis of this disease.This work was supported by awards from the Canadian Institutes of Health Research, the Canadian 2019 Novel Coronavirus (COVID-19) Rapid Research Funding initiative (CIHR OV2 – 170357), Research Nova Scotia (DJK), Atlantic Genome/Genome Canada (DJK), Li-Ka Shing Foundation (DJK), Dalhousie Medical Research Foundation (DJK), the “Subvenciones de concesión directa para proyectos y programas de investigación del virus SARS‐CoV2, causante del COVID‐19”, FONDO–COVID19, Instituto de Salud Carlos III (COV20/00110, CIBERES, 06/06/0028), (AT) and fnally by the “Convocatoria extraordinaria y urgente de la Gerencia Regional de Salud de Castilla y León, para la fnanciación de proyectos de investigación en enfermedad COVID-19” (GRS COVID 53/A/20) (CA). DJK is a recipient of the Canada Research Chair in Translational Vaccinology and Infammation. APT was funded by the Sara Borrell Research Grant CD018/0123 funded by Instituto de Salud Carlos III and co-fnanced by the European Development Regional Fund (A Way to Achieve Europe programme). The funding sources did not play any role neither in the design of the study and collection, not in the analysis, in the interpretation of data or in writing the manuscript

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

    Full text link
    Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis

    Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells

    Get PDF
    Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.This work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO, grants no. BFU2014-59009-P, SAF2016-76083-R and CTQ2015-64425-C2-1-R), CYTED (grant no. 214RT0482); the Junta de Andalucía (grant no. FQM2012-1467), the European Union (FEDER and FSE) the CSIC and the MIUR (PRIN 2010 JMAZML, MultiNanoIta).Peer Reviewe

    Identidad religiosa y relaciones de trabajo: Un estudio de la jurisprudencia del Tribunal Europeo de Derechos Humanos

    No full text
    Si estás interesado en el libro consíguelo en www.amazon.esEsta monografía, bajo el título "Identidad religiosa y relaciones de trabajo. Un estudio de la jurisprudencia del Tribunal Europeo de Derechos Humanos", es fruto del trabajo desarrollado por el Grupo de Investigación «Culturas, religiones y derechos humanos en la sociedad actual», dentro del Plan Propio de Investigación, Desarrollo e Innovación (2013-2015) de la Universidad Internacional de La Rioja. Este Grupo, dirigido por el profesor Miguel Rodríguez Blanco, Catedrático de Derecho Eclesiástico del Estado de la Universidad de Alcalá, focaliza sus investigaciones en el ámbito de las Ciencias Sociales, con predominio de la perspectiva jurídica, pero añade la virtualidad de estar compuesto por expertos en distintas disciplinas: Derecho, Antropología, Sociología, Historia y Filosofía. El libro se encuentra dividido en dos partes: Las identidades religiosas en las sociedades modernas y Religión y trabajo en la jurisprudencia del Tribunal Europeo de Derechos Humanos. Toda la obra pivota en torno a la identidad religiosa y las relaciones laborales, sus repercusiones prácticas en cuestiones tales como la simbología religiosa, la libertad de expresión, redes sociales, autonomía confesional, festividades religiosas…, si bien, con carácter previo al análisis jurisprudencial, se exponen las coordenadas en las que se desenvuelven las identidades en las sociedades contemporáneas y luego, desde su contextualización, se proyectan un conjunto de campos de actuación que tienen en cuenta las experiencias legislativas y jurisprudenciales de otros países

    Ultrasmall Manganese Ferrites as Multimodal Bioimaging Agents and Fenton/Haber-Weiss Catalysts

    No full text
    Ultrasmall manganese ferrite nanoparticles display interesting features in bioimaging and Fenton nanocatalysis. However, little is known about how to optimize these nanoparticles to achieve simultaneously the highest efficiency in both types of applications. Herein, we present a cost-efficient synthetic microwave method that enables manganese ferrite nanoparticles to be produced with excellent control in size, chemical composition and colloidal stability. We show how the reaction’s pH has a substantial impact on the Mn incorporation into the nanoparticles and the level of Mn doping can be finely tailored to a wide range (MnxFe3-xO4, 0.1 ≤ x ≤ 2.4). The magnetic relaxivities (1.6 ≤ r1 ≤ 10.6 mM-1s-1 and (7.5 ≤ r2 ≤ 29.9 mM-1s-1) and Fenton/Haber-Weiss catalytic properties measured for the differently doped nanoparticles show a strong dependence on the Mn content and, interestingly, on the synthetic reaction’s pH. Positive contrast in magnetic resonance imaging is favored by low Mn contents, while dual mode magnetic resonance imaging contrast and catalytic activity increases in nanoparticles with a high degree of Mn doping. We show that this is valid in solution, in a murine model and intracellularly respectively. Besides, this synthetic protocol allows core-radiolabeling for high-sensitive molecular imaging while maintaining relaxometric and catalytic properties. All of these results show the robust characteristics of these multifunctional manganese ferrite nanoparticles as theranostic agents.</p
    corecore