166 research outputs found

    Constraining the Milky Way Dark Matter Density Profile with Gamma-Rays with Fermi-LAT

    Full text link
    We study the abilities of the Fermi-LAT instrument on board of the Fermi mission to simultaneously constrain the Milky Way dark matter density profile and some dark matter particle properties, as annihilation cross section, mass and branching ratio into dominant annihilation channels. A single dark matter density profile is commonly assumed to determine the capabilities of gamma-ray experiments to extract dark matter properties or to set limits on them. However, our knowledge of the Milky Way halo is far from perfect, and thus in general, the obtained results are too optimistic. Here, we study the effect these astrophysical uncertainties would have on the determination of dark matter particle properties and conversely, we show how gamma-ray searches could also be used to learn about the structure of the Milky Way halo, as a complementary tool to other type of observational data that study the gravitational effect caused by the presence of dark matter. In addition, we also show how these results would improve if external information on the annihilation cross section and on the local dark matter density were included and compare our results with the predictions from numerical simulations.Comment: 29 pages, 7 figure

    Spectral analysis of the high-energy IceCube neutrinos

    Get PDF
    A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1:1:1), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron antineutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether or not the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.Comment: 33 pages, 13 figures. v3: one extra figure (fig. 13), some references updated and some formulae moved to the Appendix. It matches version published in PR
    corecore