24 research outputs found

    Synthesis and optical-electronic properties of a novel star-shaped benzodithiophene molecule

    No full text
    Benzodithiophene (BDT)-based star-shaped molecule (12TBDT) was synthesized by Stille coupling reactions. The star-shaped molecule shows high decomposition temperature (447 °C), low-lying HOMO level (-5.52 eV), and wide UVvis absorption between 300 and 530nm (Eg= 2.36 eV). DFT results show that the electron density of the HOMO and LUMO are localized on the thiophene and BDT groups. To the best of our knowledge, this is one of the earliest reports on star-shaped benzodithiophene molecules.</p

    Improved open-circuit voltage of benzodithiophene based polymer solar cells using bulky terthiophene side group

    No full text
    Terthiophene, including one α-α and one branching α-β connection of the thiophene units, is introduced as benzodithiophene (BDT) side chain to build a novel two-dimensional (2D) conjugated BDT block. By copolymerizing this BDT block with three electron acceptors (DTTz (bis(thiophene-2-yl)-tetrazine), DPP (diketopyrrolopyrrole), DTffBT (4,7-bis(4-hexylthienyl)-5,6-difluoro-2,1,3-benzothiadiazole)) and one electron donor (TTT (2,5-Di(2-thienyl)thiophene)), four terthiophene side-chained benzodithiophene based copolymers were synthesized. Due to the difference in electron affinity among DTTz, DPP, DTffBT and TTT, these four polymers show different UV-vis absorption spectra and optical band gaps (1.3-2.0 eV), while fortunately they all remain deep highest occupied molecular orbital (HOMO) energy levels (-5.3 to 5.6 eV) which is very favorable to high open-circuit voltage (Voc) polymer solar cells (PSCs). By comparing the photovoltaic properties with polymers which have same backbone but do not have the bulky 2D side group in the literatures, our polymer solar cells devices show higher Voc. Especially for PQ3 (a copolymer of benzodithiophene and diketopyrrolopyrrole), the donor photon energy loss (Eg-eVoc) is 0.51 eV which is almost the lowest value achieved by the researchers. It can be concluded that: the bulky terthiophene side group helps to improve Voc of the PSCs devices. The overall performance of solar cells devices is correlated with the molecule conformation, polymer hole mobility and polymer/PCBM blend film morphology.</p

    Heterologous expression facilitates the discovery and characterization of marine microbial natural products

    No full text
    Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been developed to discover novel marine microbial natural products, among which heterologous expression has proven to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few novel bioactive natural products from marine microorganisms have been identified by the expression of their biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for characterizing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, and yield optimization of natural products from marine microorganisms and discusses the future directions of the heterologous expression strategy in facilitating novel natural product exploitation
    corecore