105 research outputs found

    The carbonization of aromatic molecules with three-dimensional structures affords carbon materials with controlled pore sizes at the Ångstrom-level

    Get PDF
    分子構造により細孔径を制御したカーボンを開発. 京都大学プレスリリース. 2021-05-24.Carbon materials with controlled pore sizes at the nanometer level have been obtained by template methods, chemical vapor desorption, and extraction of metals from carbides. However, to produce porous carbons with controlled pore sizes at the Ångstrom-level, syntheses that are simple, versatile, and reproducible are desired. Here, we report a synthetic method to prepare porous carbon materials with pore sizes that can be precisely controlled at the Ångstrom-level. Heating first induces thermal polymerization of selected three-dimensional aromatic molecules as the carbon sources, further heating results in extremely high carbonization yields (>86%). The porous carbon obtained from a tetrabiphenylmethane structure has a larger pore size (4.40 Å) than those from a spirobifluorene (4.07 Å) or a tetraphenylmethane precursor (4.05 Å). The porous carbon obtained from tetraphenylmethane is applied as an anode material for sodium-ion battery

    CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium

    Get PDF
    Developing effective catalysts for CO2 hydrogenation to methanol is an important step to improve the efficiency of a promising process for green synthesis of fuels and chemicals. Optimizing the Cu dispersion is often the main goal in preparing Cu/ZnO-based catalysts due to the strong dependence of the catalytic activity on the Cu surface area. However, the catalytic properties are also related to the nature of the Cu-ZnO interface. Herein, a series of hydrotalcite-derived Cu/ZnO/Al2O3 catalysts were prepared for CO2 hydrogenation to methanol. The preparation method results in partially embedded Cu particles within the Zn-Al oxide matrix. This microstructure exhibits significantly enhanced intrinsic activity and methanol selectivity. Loss of the interfacial area between Cu and Zn-Al mixed oxide phase due to sintering of Zn-Al matrix is identified as the main reason for deactivation of the HT-derived catalysts. The influence of In on Cu/ZnO-based catalysts is also investigated. It is found that In decreases the activity but increases the methanol selectivity and stabilizes the Cu particles and the Zn-Al mixed oxide phase. The lower activity of the In-containing catalysts is linked to the inhibition of Cu active sites by CuxIny species.publishedVersio

    Modulation of the β-Catenin Signaling Pathway by the Dishevelled-Associated Protein Hipk1

    Get PDF
    BACKGROUND:Wnts are evolutionarily conserved ligands that signal through beta-catenin-dependent and beta-catenin-independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. METHODOLOGY:We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/beta-catenin target gene activation, as demonstrated by beta-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. CONCLUSIONS:These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/beta-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation

    Ni-based bimetallic heterogeneous catalysts for energy and environmental applications

    Get PDF
    Bimetallic catalysts have attracted extensive attention for a wide range of applications in energy production and environmental remediation due to their tunable chemical/physical properties. These properties are mainly governed by a number of parameters such as compositions of the bimetallic systems, their preparation method, and their morphostructure. In this regard, numerous efforts have been made to develop “designer” bimetallic catalysts with specific nanostructures and surface properties as a result of recent advances in the area of materials chemistry. The present review highlights a detailed overview of the development of nickel-based bimetallic catalysts for energy and environmental applications. Starting from a materials science perspective in order to obtain controlled morphologies and surface properties, with a focus on the fundamental understanding of these bimetallic systems to make a correlation with their catalytic behaviors, a detailed account is provided on the utilization of these systems in the catalytic reactions related to energy production and environmental remediation. We include the entire library of nickel-based bimetallic catalysts for both chemical and electrochemical processes such as catalytic reforming, dehydrogenation, hydrogenation, electrocatalysis and many other reactions
    corecore