20 research outputs found

    A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients

    Get PDF
    Reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient intervention that can improve aerobic capacity and insulin sensitivity in sedentary individuals. The present study compared the effects of REHIT and moderate-intensity walking on health markers in patients with type 2 diabetes (T2D) in a counter-balanced crossover study. Sixteen men with T2D (mean ± SD age: 55 ± 5 years, body mass index: 30.6 ± 2.8 kg·m−2, maximal aerobic capacity: 27 ± 4 mL·kg−1·min−1) completed 8 weeks of REHIT (three 10-min low-intensity cycling sessions/week with two “all-out” 10–20-s sprints) and 8 weeks of moderate-intensity walking (five 30-min sessions/week at an intensity corresponding to 40%–55% of heart-rate reserve), with a 2-month wash-out period between interventions. Before and after each intervention, participants underwent an incremental fitness test, an oral glucose tolerance test (OGTT), a whole-body dual-energy X-ray absorptiometry scan, and continuous glucose monitoring. REHIT was associated with a significantly larger increase in maximal aerobic capacity compared with walking (7% vs. 1%; time × intervention interaction effect:p< 0.05). Both REHIT and walking decreased resting mean arterial pressure (−4%; main effect of time:p< 0.05) and plasma fructosamine (−5%; main effect of time:p< 0.05). Neither intervention significantly improved OGTT-derived measures of insulin sensitivity, glycaemic control measured using continuous glucose monitors, blood lipid profile, or body composition. We conclude that REHIT is superior to a 5-fold larger volume of moderate-intensity walking in improving aerobic fitness, but similar to walking REHIT is not an effective intervention for improving insulin sensitivity or glycaemic control in T2D patients in the short term

    Evaluation of cardiovascular risk- lowering health benefits accruing from laboratory-based, community-based and exercise-referral exercise programmes

    Get PDF
    _____________________________________________________________ This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions. When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO database to judge whether or not it is copyright safe to add this version of the paper to this repository. http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ Evaluation of cardiovascular risklowering health benefits accruing from laboratory-based, community-based and exercise-referral exercise programme

    Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT)

    Get PDF
    PurposeWe have previously shown that 6 weeks of reduced-exertion high-intensity interval training (REHIT) improves V˙O2V˙O2 max in sedentary men and women and insulin sensitivity in men. Here, we present two studies examining the acute physiological and molecular responses to REHIT.MethodsIn Study 1, five men and six women (age: 26 ± 7 year, BMI: 23 ± 3 kg m−2, V˙O2V˙O2 max: 51 ± 11 ml kg−1 min−1) performed a single 10-min REHIT cycling session (60 W and two 20-s ‘all-out’ sprints), with vastus lateralis biopsies taken before and 0, 30, and 180 min post-exercise for analysis of glycogen content, phosphorylation of AMPK, p38 MAPK and ACC, and gene expression of PGC1α and GLUT4. In Study 2, eight men (21 ± 2 year; 25 ± 4 kg·m−2; 39 ± 10 ml kg−1 min−1) performed three trials (REHIT, 30-min cycling at 50 % of V˙O2V˙O2 max, and a resting control condition) in a randomised cross-over design. Expired air, venous blood samples, and subjective measures of appetite and fatigue were collected before and 0, 15, 30, and 90 min post-exercise.ResultsAcutely, REHIT was associated with a decrease in muscle glycogen, increased ACC phosphorylation, and activation of PGC1α. When compared to aerobic exercise, changes in V˙O2V˙O2 , RER, plasma volume, and plasma lactate and ghrelin were significantly more pronounced with REHIT, whereas plasma glucose, NEFAs, PYY, and measures of appetite were unaffected.ConclusionsCollectively, these data demonstrate that REHIT is associated with a pronounced disturbance of physiological homeostasis and associated activation of signalling pathways, which together may help explain previously observed adaptations once considered exclusive to aerobic exercise
    corecore