281 research outputs found

    A three stage model for adsorption of nonionic surfactants

    Get PDF
    Copyright @ 1993 American Institute of Physics.A three stage model for the adsorption of nonionic surfactants is proposed which makes use of existing theory from studies of random sequential adsorption. The model is simulated and the adsorption curves are found. The theory of random sequential adsorption is used to calculate the coverage exactly at the end of each of the three stages

    Broad chemical transferability in structure-based coarse-graining

    Get PDF
    Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7_7O2_2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.Comment: 15 pages, 7 figure

    Spin-polarized transport through a single-level quantum dot in the Kondo regime

    Full text link
    Nonequilibrium electronic transport through a quantum dot coupled to ferromagnetic leads (electrodes) is studied theoretically by the nonequilibrium Green function technique. The system is described by the Anderson model with arbitrary correlation parameter UU. Exchange interaction between the dot and ferromagnetic electrodes is taken into account {\it via} an effective molecular field. The following situations are analyzed numerically: (i) the dot is symmetrically coupled to two ferromagnetic leads, (ii) one of the two ferromagnetic leads is half-metallic with almost total spin polarization of electron states at the Fermi level, and (iii) one of the two electrodes is nonmagnetic whereas the other one is ferromagnetic. Generally, the Kondo peak in the density of states (DOS) becomes spin-split when the total exchange field acting on the dot is nonzero. The spin-splitting of the Kondo peak in DOS leads to splitting and suppression of the corresponding zero bias anomaly in the differential conductance.Comment: 9 pages, 7 figure

    Indium rich InGaN solar cells grown by MOCVD

    Get PDF
    Cataloged from PDF version of article.This study focuses on both epitaxial growths of InxGa1-xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from 8.8 to 7.1 % in Sample A, 15.7-7.1 % in Sample B, and 26.6-15.1 % in Sample C. The current voltage measurements of the solar cell devices were carried out after a standard micro fabrication procedure. Sample B exhibits better performance with a short-circuit current density of 6 mA/cm(2), open-circuit voltage of 0.25 V, fill factor of 39.13 %, and the best efficiency measured under a standard solar simulator with one-sun air mass 1.5 global light sources (100 mW/cm(2)) at room temperature for finished devices was 0.66 %

    Refinement of risk stratification for childhood rhabdomyosarcoma using FOXO1 fusion status in addition to established clinical outcome predictors: A report from the Children's Oncology Group

    Get PDF
    Background: Previous studies of the prognostic importance of FOXO1 fusion status in patients with rhabdomyosarcoma (RMS) have had conflicting results. We re�examined risk stratification by adding FOXO1 status to traditional clinical prognostic factors in children with localized or metastatic RMS. Methods: Data from six COG clinical trials (D9602, D9802, D9803, ARST0331, ARTS0431, ARST0531; two studies each for low�, intermediate� and high�risk patients) accruing previously untreated patients with RMS from 1997 to 2013 yielded 1727 evaluable patients. Survival tree regression for event�free survival (EFS) was conducted to recursively select prognostic factors for branching and split. Factors included were age, FOXO1, clinical group, histology, nodal status, number of metastatic sites, primary site, sex, tumor size, and presence of metastases in bone/bone marrow, soft tissue, effusions, lung, distant lymph nodes, and other sites. Definition and outcome of the proposed risk groups were compared to existing systems and cross�validated results. Results: The 5�year EFS and overall survival (OS) for evaluable patients were 69% and 79%, respectively. Extent of disease (localized versus metastatic) was the first split (EFS 73% vs 30%; OS 84% vs. 42%). FOXO1 status (positive vs negative) was significant in the second split both for localized (EFS 52% vs 78%; OS 65% vs 88%) and metastatic disease (EFS 6% vs 46%; OS 19% vs 58%). Conclusions: After metastatic status, FOXO1 status is the most important prognostic factor in patients with RMS and improves risk stratification of patients with localized RMS. Our findings support incorporation of FOXO1 status in risk stratified clinical trials

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics

    Full text link
    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33 degrees Celsius is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events

    Get PDF
    The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi's fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric datasets derived from Sulawesi's three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years

    Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events

    Get PDF
    The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi’s fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructionswithgenetic andmorphometric datasets derived from Sulawesi’s three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesiwas driven by geological events over the last few million years

    Synchronous diversification of Sulawesi’s iconic artiodactyls driven by recent geological events

    Get PDF
    The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back 40 Myr ago. Recent studies, however, suggest that much of Sulawesi’s fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification, and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric data sets derived from Sulawesi’s three largest mammals: the Babirusa, Anoa, and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Myr ago to 2-3 Myr ago), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (~1–2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years
    • …
    corecore