9 research outputs found

    The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease

    Get PDF
    Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease

    8K/16K Video and 3D Audio Coding and Playback for Large-Screen Immersive Spaces

    No full text

    Development of a Walking Robotic Hexapod Platform

    No full text
    The purpose of this project was to design and build a robot capable of competing in the 2017 RoboGames Walker Challenge and interfacing with the optionally attached manipulator. The competition consists of a 3-meterlong course covered with various objects to create an unstable surface, which the hexapod must be capable of traversing quickly. The hexapod must also be capable of interfacing with the attachable manipulator, mechanically and electrically, and communicating via software. While this robotic hexapod has been designed to complete a specific task, the long term intent is for this project to become a prototype for future projects. There are several applications in which a walking mobile robot would be more useful than a wheeled one. Walking robots are capable of navigating more treacherous terrain, such as stairs or rubble in a condemned or burning building. Additionally, hexapods can utilize a variety of gaits which allows them to optimize their movement. A wave gait offers the most amount of stability and least amount of speed with five legs always in contact with the ground, a tripedal gait offers a moderate amount of stability and speed with three legs always in contact with the ground, and a bipedal gait offers the least amount of stability and most speed with two legs in contact with the ground. This project implements a tripedal gait to allow for quick completion of the Walker Challenge while also maintaining mechanical stability. Eagle Prize Awar

    The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease

    No full text
    corecore