9,732 research outputs found
Loss tolerant linear optical quantum memory by measurement-based quantum computing
We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188â91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times
Hourly Variability in Q0957+561
We have continued our effort to re-reduce archival Q0957+561 brightness
monitoring data and present results for 1629 R-band images using the methods
for galaxy subtraction and seeing correction reported previously. The new
dataset comes from 4 observing runs, several nights apiece, with sampling of
typically 5 minutes, which allows the first measurement of the structure
function for variations in the R-band from timescales of hours to years.
Comparison of our reductions to previous reductions of the same data, and to
r-band photometry produced at Apache Point Observatory shows good overall
agreement. Two of the data runs, separated by 417 days, permit a sharpened
value for the time delay of 417.4 days, valid only if the time delay is close
to the now-fashionable 417-day value; our data do not constrain a delay if it
is more than three days from this 417-day estimate. Our present results show no
unambiguous signature of the daily microlensing, though a suggestive feature is
found in the data. Both time delay measurement and microlensing searches suffer
from from the lack of sampling at half-day offsets, inevitable at a single
observatory, hence the need for round-the-clock monitoring with participation
by multiple observatories.Comment: AASTeX 4.0 preprint style, 21 pages, 8 EPS figure
Distinct Quantum States Can Be Compatible with a Single State of Reality
Perhaps the quantum state represents information about reality, and not
reality directly. Wave function collapse is then possibly no more mysterious
than a Bayesian update of a probability distribution given new data. We
consider models for quantum systems with measurement outcomes determined by an
underlying physical state of the system but where several quantum states are
consistent with a single underlying state---i.e., probability distributions for
distinct quantum states overlap. Significantly, we demonstrate by example that
additional assumptions are always necessary to rule out such a model.Comment: 5 pages, 2 figure
Particle alignments and shape change in Ge and Ge
The structure of the nuclei Ge and Ge is studied
by the shell model on a spherical basis. The calculations with an extended
Hamiltonian in the configuration space
(, , , ) succeed in reproducing
experimental energy levels, moments of inertia and moments in Ge isotopes.
Using the reliable wave functions, this paper investigates particle alignments
and nuclear shapes in Ge and Ge.
It is shown that structural changes in the four sequences of the positive-
and negative-parity yrast states with even and odd are caused by
various types of particle alignments in the orbit.
The nuclear shape is investigated by calculating spectroscopic moments of
the first and second states, and moreover the triaxiality is examined by
the constrained Hatree-Fock method.
The changes of the first band crossing and the nuclear deformation depending
on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.
Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars
We show how direct microlensing-reverberation analysis performed on two
well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be
used to observe the inner structure of two quasars which are in significantly
different spectral states. These observations allow us to measure the detailed
internal structure of quasar Q2237 in a radio quiet high-soft state, and
compare it to quasar Q0957 in a radio loud low-hard state. We find that the
observed differences in the spectral states of these two quasars can be
understood as being due to the location of the inner radii of their accretion
disks relative to the co-rotation radii of rotating intrinsically magnetic
supermassive compact objects in the centers of these quasars.Comment: 26 page manuscript with 2 tables and 2 figures, submitted to
Astronomical Journa
Gauge Orbit Types for Theories with Classical Compact Gauge Group
We determine the orbit types of the action of the group of local gauge
transformations on the space of connections in a principal bundle with
structure group O(n), SO(n) or over a closed, simply connected manifold
of dimension 4. Complemented with earlier results on U(n) and SU(n) this
completes the classification of the orbit types for all classical compact gauge
groups over such space-time manifolds. On the way we derive the classification
of principal bundles with structure group SO(n) over these manifolds and the
Howe subgroups of SO(n).Comment: 57 page
A separability criterion for density operators
We give a necessary and sufficient condition for a mixed quantum mechanical
state to be separable. The criterion is formulated as a boundedness condition
in terms of the greatest cross norm on the tensor product of trace class
operators.Comment: REVTeX, 5 page
Further results on the cross norm criterion for separability
In the present paper the cross norm criterion for separability of density
matrices is studied. In the first part of the paper we determine the value of
the greatest cross norm for Werner states, for isotropic states and for Bell
diagonal states. In the second part we show that the greatest cross norm
criterion induces a novel computable separability criterion for bipartite
systems. This new criterion is a necessary but in general not a sufficient
criterion for separability. It is shown, however, that for all pure states, for
Bell diagonal states, for Werner states in dimension d=2 and for isotropic
states in arbitrary dimensions the new criterion is necessary and sufficient.
Moreover, it is shown that for Werner states in higher dimensions (d greater
than 2), the new criterion is only necessary.Comment: REVTeX, 19 page
A Rural/Urban Comparison of Privacy and Confidentiality Concerns Associated with Providing Sensitive Location Information in Epidemiologic Research Involving Persons Who Use Drugs
BackgroundâAnalyses that link contextual factors with individual-level data can improve our understanding of the risk environment ; however, the accuracy of information provided by participants about locations where illegal/stigmatized behaviors occur may be influenced by privacy/confidentiality concerns that may vary by setting and/or data collection approach.
MethodsâWe recruited thirty-five persons who use drugs from a rural Appalachian town and a Mid-Atlantic city to participate in in-depth interviews. Through thematic analyses, we identified and compared privacy/confidentiality concerns associated with two survey methods that (1) collect self-reported addresses/cross-streets and (2) use an interactive web-based map to find/confirm locations in rural and urban settings.
ResultsâConcerns differed more by setting than between methods. For example, (1) rural participants valued interviewer rapport and protections provided by the Certificate of Confidentiality more; (2) locations considered to be sensitive differed in rural (i.e., others\u27 homes) and urban (i.e., where drugs were used) settings; and (3) urban participants were more likely to view providing cross-streets as an acceptable alternative to providing exact addresses for sensitive locations and to prefer the web-based map approach.
ConclusionâRural-urban differences in privacy/confidentiality concerns reflect contextual differences (i.e., where drugs are used/purchased, population density, and prior drug-related arrests). Strategies to alleviate concerns include: (1) obtain a Certificate of Confidentiality, (2) collect geographic data at the scale necessary for proposed analyses, and (3) permit participants to provide intersections/landmarks in close proximity to actual locations rather than exact addresses or to skip questions where providing an intersection/landmark would not obfuscate the actual address
A Rapid Microlensing Event in the Q0957+561 A,B Gravitational Lens System
We re-analyze brightness data sampled intensively over 5 nights at two epochs
separated by the quasar lens time delay, to examine the nature of the observed
microlensing. We find strong evidence for a microlensing event with an
amplitude of 1% and a time scale of twelve hours. The existence of such rapid
microlensing, albeit at low amplitude, imposes constraints on the nature of the
quasar and of the baryonic dark matter
- âŠ