9,732 research outputs found

    Loss tolerant linear optical quantum memory by measurement-based quantum computing

    Get PDF
    We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times

    Hourly Variability in Q0957+561

    Get PDF
    We have continued our effort to re-reduce archival Q0957+561 brightness monitoring data and present results for 1629 R-band images using the methods for galaxy subtraction and seeing correction reported previously. The new dataset comes from 4 observing runs, several nights apiece, with sampling of typically 5 minutes, which allows the first measurement of the structure function for variations in the R-band from timescales of hours to years. Comparison of our reductions to previous reductions of the same data, and to r-band photometry produced at Apache Point Observatory shows good overall agreement. Two of the data runs, separated by 417 days, permit a sharpened value for the time delay of 417.4 days, valid only if the time delay is close to the now-fashionable 417-day value; our data do not constrain a delay if it is more than three days from this 417-day estimate. Our present results show no unambiguous signature of the daily microlensing, though a suggestive feature is found in the data. Both time delay measurement and microlensing searches suffer from from the lack of sampling at half-day offsets, inevitable at a single observatory, hence the need for round-the-clock monitoring with participation by multiple observatories.Comment: AASTeX 4.0 preprint style, 21 pages, 8 EPS figure

    Distinct Quantum States Can Be Compatible with a Single State of Reality

    Get PDF
    Perhaps the quantum state represents information about reality, and not reality directly. Wave function collapse is then possibly no more mysterious than a Bayesian update of a probability distribution given new data. We consider models for quantum systems with measurement outcomes determined by an underlying physical state of the system but where several quantum states are consistent with a single underlying state---i.e., probability distributions for distinct quantum states overlap. Significantly, we demonstrate by example that additional assumptions are always necessary to rule out such a model.Comment: 5 pages, 2 figure

    Particle alignments and shape change in 66^{66}Ge and 68^{68}Ge

    Full text link
    The structure of the N≈ZN \approx Z nuclei 66^{66}Ge and 68^{68}Ge is studied by the shell model on a spherical basis. The calculations with an extended P+QQP+QQ Hamiltonian in the configuration space (2p3/22p_{3/2}, 1f5/21f_{5/2}, 2p1/22p_{1/2}, 1g9/21g_{9/2}) succeed in reproducing experimental energy levels, moments of inertia and QQ moments in Ge isotopes. Using the reliable wave functions, this paper investigates particle alignments and nuclear shapes in 66^{66}Ge and 68^{68}Ge. It is shown that structural changes in the four sequences of the positive- and negative-parity yrast states with even JJ and odd JJ are caused by various types of particle alignments in the g9/2g_{9/2} orbit. The nuclear shape is investigated by calculating spectroscopic QQ moments of the first and second 2+2^+ states, and moreover the triaxiality is examined by the constrained Hatree-Fock method. The changes of the first band crossing and the nuclear deformation depending on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.

    Direct Microlensing-Reverberation Observations of the Intrinsic magnetic Structure of AGN in Different Spectral States: A Tale of Two Quasars

    Full text link
    We show how direct microlensing-reverberation analysis performed on two well-known Quasars (Q2237 - The Einstein Cross and Q0957 - The Twin) can be used to observe the inner structure of two quasars which are in significantly different spectral states. These observations allow us to measure the detailed internal structure of quasar Q2237 in a radio quiet high-soft state, and compare it to quasar Q0957 in a radio loud low-hard state. We find that the observed differences in the spectral states of these two quasars can be understood as being due to the location of the inner radii of their accretion disks relative to the co-rotation radii of rotating intrinsically magnetic supermassive compact objects in the centers of these quasars.Comment: 26 page manuscript with 2 tables and 2 figures, submitted to Astronomical Journa

    Gauge Orbit Types for Theories with Classical Compact Gauge Group

    Full text link
    We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n)Sp(n) over a closed, simply connected manifold of dimension 4. Complemented with earlier results on U(n) and SU(n) this completes the classification of the orbit types for all classical compact gauge groups over such space-time manifolds. On the way we derive the classification of principal bundles with structure group SO(n) over these manifolds and the Howe subgroups of SO(n).Comment: 57 page

    A separability criterion for density operators

    Full text link
    We give a necessary and sufficient condition for a mixed quantum mechanical state to be separable. The criterion is formulated as a boundedness condition in terms of the greatest cross norm on the tensor product of trace class operators.Comment: REVTeX, 5 page

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    A Rural/Urban Comparison of Privacy and Confidentiality Concerns Associated with Providing Sensitive Location Information in Epidemiologic Research Involving Persons Who Use Drugs

    Get PDF
    Background—Analyses that link contextual factors with individual-level data can improve our understanding of the risk environment ; however, the accuracy of information provided by participants about locations where illegal/stigmatized behaviors occur may be influenced by privacy/confidentiality concerns that may vary by setting and/or data collection approach. Methods—We recruited thirty-five persons who use drugs from a rural Appalachian town and a Mid-Atlantic city to participate in in-depth interviews. Through thematic analyses, we identified and compared privacy/confidentiality concerns associated with two survey methods that (1) collect self-reported addresses/cross-streets and (2) use an interactive web-based map to find/confirm locations in rural and urban settings. Results—Concerns differed more by setting than between methods. For example, (1) rural participants valued interviewer rapport and protections provided by the Certificate of Confidentiality more; (2) locations considered to be sensitive differed in rural (i.e., others\u27 homes) and urban (i.e., where drugs were used) settings; and (3) urban participants were more likely to view providing cross-streets as an acceptable alternative to providing exact addresses for sensitive locations and to prefer the web-based map approach. Conclusion—Rural-urban differences in privacy/confidentiality concerns reflect contextual differences (i.e., where drugs are used/purchased, population density, and prior drug-related arrests). Strategies to alleviate concerns include: (1) obtain a Certificate of Confidentiality, (2) collect geographic data at the scale necessary for proposed analyses, and (3) permit participants to provide intersections/landmarks in close proximity to actual locations rather than exact addresses or to skip questions where providing an intersection/landmark would not obfuscate the actual address

    A Rapid Microlensing Event in the Q0957+561 A,B Gravitational Lens System

    Get PDF
    We re-analyze brightness data sampled intensively over 5 nights at two epochs separated by the quasar lens time delay, to examine the nature of the observed microlensing. We find strong evidence for a microlensing event with an amplitude of 1% and a time scale of twelve hours. The existence of such rapid microlensing, albeit at low amplitude, imposes constraints on the nature of the quasar and of the baryonic dark matter
    • 

    corecore