290 research outputs found
Discovery of the first giant double radio relic in a galaxy cluster found in the PLANCK Sunyaev-Zel'dovich cluster survey: PLCK G287.0+32.9
We report the discovery of large scale diffuse non-thermal radio emission in
PLCK G287.0+32.9, an exceptionally hot (T ~ 13 keV), massive and luminous
galaxy cluster, strongly detected by the PLANCK satellite in a recent, all-sky
blind search for new clusters through Sunyaev-Zel'dovich effect. Giant
Metrewave Radio telescope 150 MHz and Very Large Array 1.4 GHz radio data
reveal a pair of giant (>1 Mpc) "arc" shaped peripheral radio-relics
(signatures of shock waves) of unprecedented scale (linear separation ~4.4 Mpc
at redshift 0.39), located at distances from the cluster center which are about
0.7 and 1.3 of the cluster's virial radius. Another possible giant relic and a
radio-halo is detected closer to the cluster center. These relic sources are
unique "signposts" of extremely energetic mergers and shocks (both ongoing and
past), that are assembling and heating up this very massive galaxy cluster.
They are also a probe of the filamentary cosmic-web structure beyond the
cluster virial radius. Optical imaging with the IUCAA 2 meter telescope and
XMM-Newton X-ray data confirm a very rich galaxy cluster with a morphologically
disturbed core region, suggesting a dynamically perturbed merging system.Comment: This version matches with the published version in Astrophysical
Journal Letter
Galaxies Probing Galaxies at High Resolution: Co-Rotating Gas Associated with a Milky Way Analog at z=0.4
We present results on gas flows in the halo of a Milky Way-like galaxy at
z=0.413 based on high-resolution spectroscopy of a background galaxy. This is
the first study of circumgalactic gas at high spectral resolution towards an
extended background source (i.e., a galaxy rather than a quasar). Using
longslit spectroscopy of the foreground galaxy, we observe spatially extended H
alpha emission with circular rotation velocity v=270 km/s. Using echelle
spectroscopy of the background galaxy, we detect Mg II and Fe II absorption
lines at impact parameter rho=27 kpc that are blueshifted from systemic in the
sense of the foreground galaxy's rotation. The strongest absorber EW(2796) =
0.90 A has an estimated column density (N_H>10^19 cm-2) and line-of-sight
velocity dispersion (sigma=17 km/s) that are consistent with the observed
properties of extended H I disks in the local universe. Our analysis of the
rotation curve also suggests that this r=30 kpc gaseous disk is warped with
respect to the stellar disk. In addition, we detect two weak Mg II absorbers in
the halo with small velocity dispersions (sigma<10 km/s). While the exact
geometry is unclear, one component is consistent with an extraplanar gas cloud
near the disk-halo interface that is co-rotating with the disk, and the other
is consistent with a tidal feature similar to the Magellanic Stream. We can
place lower limits on the cloud sizes (l>0.4 kpc) for these absorbers given the
extended nature of the background source. We discuss the implications of these
results for models of the geometry and kinematics of gas in the circumgalactic
medium.Comment: 14 pages, 6 figures, submitted to ApJ, comments welcom
Diet modifies pioglitazoneās influence on hepatic PPARĪ³-regulated mitochondrial gene expression
Pioglitazone (Pio) is a thiazolidinedione (TZD) insulin-sensitizing drug whose effects result predominantly from its modulation of the transcriptional activity of peroxisome proliferator-activated-receptor-gamma (PPARĪ³). Pio is used to treat human insulin-resistant diabetes and also frequently considered for treatment of nonalcoholic steatohepatitis (NASH). In both settings, Pioās beneficial effects are believed to result primarily from its actions on adipose PPARĪ³ activity, which improves insulin sensitivity and reduces the delivery of fatty acids to the liver. Nevertheless, a recent clinical trial showed variable efficacy of Pio in human NASH. Hepatocytes also express PPARĪ³, and such expression increases with insulin resistance and in nonalcoholic fatty liver disease (NAFLD). Furthermore, mice that overexpress hepatocellular PPARĪ³ and Pio-treated mice with extrahepatic PPARĪ³ gene disruption develop features of NAFLD. Thus, Pioās direct impact on hepatocellular gene expression might also be a determinant of this drugās ultimate influence on insulin resistance and NAFLD. Previous studies have characterized Pioās PPARĪ³-dependent effects on hepatic expression of specific adipogenic, lipogenic, and other metabolic genes. However, such transcriptional regulation has not been comprehensively assessed. The studies reported here address that consideration by genome-wide comparisons of Pioās hepatic transcriptional effects in wildtype (WT) and liver-specific PPARĪ³-knockout (KO) mice given either control or high-fat (HFD) diets. The results identify a large set of hepatic genes for which Pioās liver PPARĪ³-dependent transcriptional effects are concordant with its effects on RXR-DNA binding in WT mice. These data also show that HFD modifies Pioās influence on a subset of such transcriptional regulation. Finally, our findings reveal a broader influence of Pio on PPARĪ³-dependent hepatic expression of nuclear genes encoding mitochondrial proteins than previously recognized. Taken together, these studies provide new insights about the tissue-specific mechanisms by which Pio affects hepatic gene expression and the broad scope of this drugās influence on such regulation
Homogenising the upper continental crust : the Si isotope evolution of the crust recorded by ancient glacial diamictites
This work was supported by PhD funding to MM by the University of St Andrews School of Earth and Environmental Sciences and the Handsel scheme, as well as by NERC grant NE/R002134/1 to PS and NSF grant EAR-1321954 to RR and RG.Twenty-four composite samples of the fine-grained matrix of glacial diamictites deposited from the Mesoarchaean to Palaeozoic have been analysed for their silicon isotope composition and used to establish, for the first time, the long-term secular Si isotope record of the compositional evolution of upper continental crust (UCC). Diamictites with Archaean and Palaeoproterozoic Nd model ages show greater silicon isotope heterogeneity than those with younger model ages (irrespective of depositional age). We attribute the anomalously light Si isotope compositions of some diamictites with Archaean model ages to the presence of glacially milled banded iron formation (BIF), substantiated by the high iron content and Ge/Si in these samples. We infer that relatively heavy Si isotope signatures in some Palaeoproterozoic diamictites (all of which have Archaean Nd model ages) are due to contribution from tonalite-trondhjemite-granodiorites (TTGs), evidenced by the abundance of TTG clasts. By the Neoproterozoic (with model ages ranging from 2.3 to 1.8 Ga), diamictite Si isotope compositions exhibit a range comparable to modern UCC. This reduced variability through time is interpreted as reflecting the decreasing importance of BIF and TTG in post-Archaean continental crust. The secular evolution of Si isotopes in the diamictites offers an independent test of models for the emergence of stable cratons and the onset of horizontal mobile-lid tectonism. The early Archaean UCC was heterogeneous and incorporated significant amounts of isotopically light BIF, but following the late Archaean stabilisation of cratons, coupled with the oxygenation of the atmosphere that led to the reduced neoformation of BIF and diminishing quantities of TTGs, the UCC became increasingly homogeneous. This homogenisation likely occurred via reworking of preexisting crust, as evidenced by Archaean Nd model ages recorded in younger diamictites.Publisher PDFPeer reviewe
The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology
Landscape connectivity, the extent to which a landscape facilitates the movements of organisms and their genes, faces critical threats from both fragmentation and habitat loss. Many conservation efforts focus on protecting and enhancing connectivity to offset the impacts of habitat loss and fragmentation on biodiversity conservation, and to increase the resilience of reserve networks to potential threats associated with climate change. Loss of connectivity can reduce the size and quality of available habitat, impede and disrupt movement (including dispersal) to new habitats, and affect seasonal migration patterns. These changes can lead, in turn, to detrimental effects for populations and species, including decreased carrying capacity, population declines, loss of genetic variation, and ultimately species extinction. Measuring and mapping connectivity is facilitated by a growing number of quantitative approaches that can integrate large amounts of information about organismsā life histories, habitat quality, and other features essential to evaluating connectivity for a given population or species. However, identifying effective approaches for maintaining and restoring connectivity poses several challenges, and our understanding of how connectivity should be designed to mitigate the impacts of climate change is, as yet, in its infancy. Scientists and managers must confront and overcome several challenges inherent in evaluating and planning for connectivity, including: ā¢characterizing the biology of focal species; ā¢understanding the strengths and the limitations of the models used to evaluate connectivity; ā¢considering spatial and temporal extent in connectivity planning; ā¢using caution in extrapolating results outside of observed conditions; ā¢considering non-linear relationships that can complicate assumed or expected ecological responses; ā¢accounting and planning for anthropogenic change in the landscape; ā¢using well-defined goals and objectives to drive the selection of methods used for evaluating and planning for connectivity; ā¢and communicating to the general public in clear and meaningful language the importance of connectivity to improve awareness and strengthen policies for ensuring conservation. Several aspects of connectivity science deserve additional attention in order to improve the effectiveness of design and implementation. Research on species persistence, behavioral ecology, and community structure is needed to reduce the uncertainty associated with connectivity models. Evaluating and testing connectivity responses to climate change will be critical to achieving conservation goals in the face of the rapid changes that will confront many communities and ecosystems. All of these potential areas of advancement will fall short of conservation goals if we do not effectively incorporate human activities into connectivity planning. While this Issue identifies substantial uncertainties in mapping connectivity and evaluating resilience to climate change, it is also clear that integrating human and natural landscape conservation planning to enhance habitat connectivity is essential for biodiversity conservation
Direct Measurements of the Stellar Continua and Balmer/4000 Angstrom Breaks of Red z>2 Galaxies: Redshifts and Improved Constraints on Stellar Populations
We use near-infrared (NIR) spectroscopy obtained with GNIRS on Gemini,
NIRSPEC on KECK, and ISAAC on the VLT to study the rest-frame optical continua
of three `Distant Red Galaxies' (having Js - Ks > 2.3) at z>2. All three galaxy
spectra show the Balmer/4000 Angstrom break in the rest-frame optical. The
spectra allow us to determine spectroscopic redshifts from the continuum with
an estimated accuracy dz/(1+z) ~ 0.001-0.04. These redshifts agree well with
the emission line redshifts for the 2 galaxies with Halpha emission. This
technique is particularly important for galaxies that are faint in the
rest-frame UV, as they are underrepresented in high redshift samples selected
in optical surveys and are too faint for optical spectroscopy. Furthermore, we
use the break, continuum shape, and equivalent width of Halpha together with
evolutionary synthesis models to constrain the age, star formation timescale,
dust content, stellar mass and star formation rate of the galaxies. Inclusion
of the NIR spectra in the stellar population fits greatly reduces the range of
possible solutions for stellar population properties. We find that the stellar
populations differ greatly among the three galaxies, ranging from a young dusty
starburst with a small break and strong emission lines to an evolved galaxy
with a strong break and no detected line emission. The dusty starburst galaxy
has an age of 0.3 Gyr and a stellar mass of 1*10^11 Msun. The spectra of the
two most evolved galaxies imply ages of 1.3-1.4 Gyr and stellar masses of
4*10^11 Msun. The large range of properties seen in these galaxies strengthens
our previous much more uncertain results from broadband photometry. Larger
samples are required to determine the relative frequency of dusty starbursts
and (nearly) passively evolving galaxies at z~2.5.Comment: Accepted for publication in the Astrophysical Journal. 12 pages, 6
figure
Ultradeep Near-Infrared ISAAC Observations of the HDF-S: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts
We present deep near-infrared (NIR) Js, H, and Ks-band ISAAC imaging of the
WFPC2 field of the HDF-S. The 2.5'x 2.5' high Galactic latitude field was
observed with the VLT under the best seeing conditions with integration times
amounting to 33.6 hours in Js, 32.3 hours in H, and 35.6 hours in Ks. We reach
total AB magnitudes for point sources of 26.8, 26.2, and 26.2 respectively (3
sigma), which make it the deepest ground-based NIR observations to date, and
the deepest Ks-band data in any field. The effective seeing of the coadded
images is ~0.45" in Js, ~0.48" in H, and ~0.46" in Ks. Using published WFPC2
optical data, we constructed a Ks-limited multicolor catalog containing 833
sources down to Ks,tot ~< 26 (AB), of which 624 have seven-band optical-to-NIR
photometry. These data allow us to select normal galaxies from their rest-frame
optical properties to high redshift (z ~< 4). The observations, data reduction
and properties of the final images are discussed, and we address the detection
and photometry procedures that were used in making the catalog. In addition, we
present deep number counts, color distributions and photometric redshifts of
the HDF-S galaxies. We find that our faint Ks-band number counts are flatter
than published counts in other deep fields, which might reflect cosmic
variations or different analysis techniques. Compared to the HDF-N, we find
many galaxies with very red V-H colors at photometric redshifts 1.95 < z < 3.5.
These galaxies are bright in Ks with infrared colors redder than Js-Ks > 2.3
(in Johnson magnitudes). Because they are extremely faint in the observed
optical, they would be missed by ultraviolet-optical selection techniques, such
as the U-dropout method.Comment: LaTeX, 24 pages, 15 figures, 3 tables. Accepted for publication in
the Astronomical Journal. The paper with full resolution images and figures
is available at http://www.strw.leidenuniv.nl/~fires/papers/2002Labbe.ps.gz .
The reduced data and catalogs can be found at
http://www.strw.leidenuniv.nl/~fires/data/hdfs
The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z=0 to z=3
We present the evolution of the rest-frame optical luminosity density, of the
integrated rest-frame optical color, and of the stellar mass density for a
sample of Ks-band selected galaxies in the HDF-S. We derived the luminosity
density in the rest-frame U, B, and V-bands and found that the luminosity
density increases by a factor of 1.9+-0.4, 2.9+-0.6, and 4.9+-1.0 in the V, B,
and U rest-frame bands respectively between a redshift of 0.1 and 3.2. We
derived the luminosity weighted mean cosmic (U-B)_rest and (B-V)_rest colors as
a function of redshift. The colors bluen almost monotonically with increasing
redshift; at z=0.1, the (U-B)_rest and (B-V)_rest colors are 0.16 and 0.75
respectively, while at z=2.8 they are -0.39 and 0.29 respectively. We derived
the luminosity weighted mean M/LV using the correlation between (U-V)_rest and
log_{10} M/LV which exists for a range in smooth SFHs and moderate extinctions.
We have shown that the mean of individual M/LV estimates can overpredict the
true value by ~70% while our method overpredicts the true values by only ~35%.
We find that the universe at z~3 had ~10 times lower stellar mass density than
it does today in galaxies with LV>1.4 \times 10^{10} h_{70}^-2 Lsol. 50% of the
stellar mass of the universe was formed by $z~1-1.5. The rate of increase in
the stellar mass density with decreasing redshift is similar to but above that
for independent estimates from the HDF-N, but is slightly less than that
predicted by the integral of the SFR(z) curve.Comment: 19 pages, 12 figures, Accepted for Publication in the Dec. 20, 2003
edition of the Astrophysical Journal. Minor changes made to match the
accepted version including short discussions on the effects of clustering and
on possible systematic effects resulting from photometric redshift error
The Color Magnitude Distribution of Field Galaxies to z~3: the evolution and modeling of the blue sequence
Using deep NIR VLT/ISAAC and optical HST/WFPC2 imaging in the fields of the
HDFS and MS1054-03, we study the rest-frame UV-to-optical colors and magnitudes
of galaxies to z~3. While there is no evidence for a red sequence at z~3, there
does appear to be a well-defined color-magnitude relation (CMR) for blue
galaxies at all redshifts, with more luminous galaxies having redder U-V
colors. The slope of the blue CMR is independent of redshift d(U-V)/dMV = -0.09
(0.01) and can be explained by a correlation of dust-reddening with luminosity.
The average color at fixed luminosity reddens strongly \Delta(U-V) = 0.75 from
z~3 to z=0, much of which can be attributed to aging of the stars. The color
scatter of the blue sequence is relatively small sigma(U-V) = 0.25 (0.03) and
constant to z~3, but notably asymmetrical with a sharp blue ridge and a wing
towards redder colors. We explore sets of star formation histories to study the
constraints placed by the shape of the scatter at z=2-3. One particular set of
models, episodic star formation, reproduces the detailed properties very well.
For a two-state model with high and low star formation, the duty cycle is
constrained to be > 40% and the contrast between the states must be a factor >
5 (or a scatter in log(SFR) of > 0.35 dex around the mean). However, episodic
models do not explain the observed tail of very red galaxies, primarily Distant
Red Galaxies (DRGs), which may have ceased star formation altogether or are
more heavily obscured. Finally, the relative number density of red, luminous MV
< -20.5 galaxies increases by a factor of ~ 6 from z = 2.7 to z = 0.5, as does
their contribution to the total rest-frame V-band luminosity density. We are
likely viewing the progressive formation of red, passively evolving galaxies.Comment: 29 pages, 24 figures, in emulateapj style. Abstract is abridged. Some
postscript figures are compressed. accepted for publication in ApJ (scheduled
for August 20, 2007, v665n 2 issue
The Origin of Line Emission in Massive z~2.3 Galaxies: Evidence for Cosmic Downsizing of AGN Host Galaxies
Using the Gemini Near-InfraRed Spectrograph (GNIRS), we have assembled a
complete sample of 20 K-selected galaxies at 2.0<z<2.7 with high quality
near-infrared spectra. As described in a previous paper, 9 of these 20 galaxies
have strongly suppressed star formation and no detected emission lines. The
present paper concerns the 11 galaxies with detected Halpha emission, and
studies the origin of the line emission using the GNIRS spectra and follow-up
observations with SINFONI on the VLT. Based on their [NII]/Halpha ratios, the
spatial extent of the line emission and several other diagnostics, we infer
that four of the eleven emission-line galaxies host narrow line active galactic
nuclei (AGNs). The AGN host galaxies have stellar populations ranging from
evolved to star-forming. Combining our sample with a UV-selected galaxy sample
at the same redshift that spans a broader range in stellar mass, we find that
black-hole accretion is more effective at the high-mass end of the galaxy
distribution (~2.9x10^11 Msun) at z~2.3. Furthermore, by comparing our results
with SDSS data, we show that the AGN activity in massive galaxies has decreased
significantly between z~2.3 and z~0. AGNs with similar normalized accretion
rates as those detected in our K-selected galaxies reside in less massive
galaxies (~4.0x10^10 Msun) at low redshift. This is direct evidence for
downsizing of AGN host galaxies. Finally, we speculate that the typical stellar
mass-scale of the actively accreting AGN host galaxies, both at low and at high
redshift, might be similar to the mass-scale at which star-forming galaxies
seem to transform into red, passive systems.Comment: Accepted for publication in the Astrophysical Journa
- ā¦