4 research outputs found

    Determination of HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in heart failure patients

    Get PDF
    Allogeneic cell therapy; Haplotype frequency; Heart failureTeràpia cel·lular al·logènica; Freqüència haplotípica; Insuficiència cardíacaTerapia celular alogénica; Frecuencia haplotípica; Insuficiencia cardíacaAIMS: Cell therapy can be used to repair functionally impaired organs and tissues in humans. Although autologous cells have an immunological advantage, it is difficult to obtain high cell numbers for therapy. Well-characterized banks of cells with human leukocyte antigens (HLA) that are representative of a given population are thus needed. The present study investigates the HLA allele and haplotype frequencies in a cohort of heart failure (HF) patients. METHODS AND RESULTS: We carried out the HLA typing and the allele and haplotype frequency analysis in 247 ambulatory HF patients. We determined HLA class I (A, B, and C) and class II (DRB1 and DQB1) using next-generation sequencing technology. The allele frequencies were obtained using Python for Population Genomics (PyPop) software, and HLA haplotypes were estimated using HaploStats. A total of 30 HLA-A, 56 HLA-B, 23 HLA-C, 36 HLA-DRB1, and 15 HLA-DQB1 distinct alleles were identified within the studied cohort. The genotype frequencies of all five HLA loci were in Hardy-Weinberg equilibrium. We detected differences in HLA allele frequencies among patients when the etiological cause of HF was considered. There were a total of 494 five-loci haplotypes, five of which were present six or more times. Moreover, the most common estimated HLA haplotype was HLA-A*01:01, HLA-B*08:01, HLA-C*07:01, HLA-DRB1*03:01, and HLA-DQB1*02:01 (6.07% haplotype frequency per patient). Remarkably, the 11 most frequent haplotypes would cover 31.17% of the patients of the cohort in need of allogeneic cell therapy. CONCLUSIONS: Our findings could be useful for improving allogeneic cell administration outcomes without concomitant immunosuppression

    Regulation of TSHR expression in the thyroid and thymus may contribute to TSHR tolerance failure in graves’ disease patients via two distinct mechanisms

    Get PDF
    Graves’ disease; TSHR; ToleranceMalaltia de Graves; TSHR; TolerànciaEnfermedad de Graves; TSHR; ToleranciaGraves' disease (GD) involves the presence of agonistic auto-antibodies against the thyrotropin receptor (TSHR), which are responsible for the clinical symptoms. While failure of TSHR tolerance is central to GD pathogenesis, the process leading to this failure remains poorly understood. Two mechanisms intimately linked to tolerance have been proposed to explain the association of SNPs located in TSHR intron 1 to GD: (1) differential alternative splicing in the thyroid; and (2) modulation of expression in the thymus. To elucidate the relative contribution to these two mechanisms to GD pathogenesis, we analyzed the level of full-length and ST4 and ST5 isoform expression in the thyroid (n = 49) and thymus (n = 39) glands, and the influence of intron 1-associated SNPs on such expression. The results show that: (1) the level of flTSHR and ST4 expression in the thymus was unexpectedly high (20% that of the thyroid); (2) while flTSHR is the predominant isoform, the levels are similar to ST4 (ratio flTSHR/ST4 = 1.34 in the thyroid and ratio flTSHR/ST4 in the thymus = 1.93); (3) next-generation sequencing confirmed the effect of the TSHR intron 1 polymorphism on TSHR expression in the thymus with a bias of 1.5 ± 0.2 overexpression of the protective allele in the thymus compared to the thyroid; (4) GD-associated intron 1 SNPs did not influence TSHR alternative splicing of ST4 and ST5 in the thyroid and thymus; and (5) three-color confocal imaging showed that TSHR is associated with both thymocytes, macrophages, and dendritic cells in the thymus. Our findings confirm the effect of intron 1 polymorphisms on thymic TSHR expression and we present evidence against an effect on the relative expression of isoforms. The high level of ST4 expression in the thymus and its distribution within the tissue suggest that this would most likely be the isoform that induces central tolerance to TSHR thus omitting most of the hinge and transmembrane portion. The lack of central tolerance to a large portion of TSHR may explain the relatively high frequency of autoimmunity related to TSHR and its clinical consequence, GD.This study was funded by Instituto de Salud Carlos III, grants PI14/00848, and PI17/00324, co-financed by the European Regional Development Fund (ERDF). DÁ-S is in recipient of a predoctoral fellowship from the Vall d’Hebron Research Institute (VHIR)

    Expanding the clinical and genetic spectra of primary immunodeficiency-related disorders with clinical exome sequencing: expected and unexpected findings

    Get PDF
    Inmunodeficiencias primarias; Secuenciación de próxima generación; Secuenciación clínica del exomaImmunodeficiències primàries; Seqüenciació de propera generació; Seqüenciació clínica d’exomesPrimary immunodeficiencies; Next generation sequencing; Clinical exome sequencingPrimary immunodeficiencies (PIDs) refer to a clinically, immunologically, and genetically heterogeneous group of over 350 disorders affecting development or function of the immune system. The increasing use of next-generation sequencing (NGS) technology has greatly facilitated identification of genetic defects in PID patients in daily clinical practice. Several NGS approaches are available, from the unbiased whole exome sequencing (WES) to specific gene panels. Here, we report on a 3-year experience with clinical exome sequencing (CES) for genetic diagnosis of PIDs. We used the TruSight One sequencing panel, which includes 4,813 disease-associated genes, in 61 unrelated patients (pediatric and adults). The analysis was done in 2 steps: first, we focused on a virtual PID panel and then, we expanded the analysis to the remaining genes. A molecular diagnosis was achieved in 19 (31%) patients: 12 (20%) with mutations in genes included in the virtual PID panel and 7 (11%) with mutations in other genes. These latter cases provided interesting and somewhat unexpected findings that expand the clinical and genetic spectra of PID-related disorders, and are useful to consider in the differential diagnosis. We also discuss 5 patients (8%) with incomplete genotypes or variants of uncertain significance. Finally, we address the limitations of CES exemplified by 7 patients (11%) with negative results on CES who were later diagnosed by other approaches (more specific PID panels, WES, and comparative genomic hybridization array). In summary, the genetic diagnosis rate using CES was 31% (including a description of 12 novel mutations), which rose to 42% after including diagnoses achieved by later use of other techniques. The description of patients with mutations in genes not included in the PID classification illustrates the heterogeneity and complexity of PID-related disorders.This study was funded by Instituto de Salud Carlos III, grants PI14/00405 and PI17/00660, cofinanced by the European Regional Development Fund (ERDF)

    Regulation of TSHR expression in the thyroid and thymus may contribute to TSHR tolerance failure in graves’ disease patients via two distinct mechanisms

    No full text
    Graves’ disease; TSHR; ToleranceMalaltia de Graves; TSHR; TolerànciaEnfermedad de Graves; TSHR; ToleranciaGraves' disease (GD) involves the presence of agonistic auto-antibodies against the thyrotropin receptor (TSHR), which are responsible for the clinical symptoms. While failure of TSHR tolerance is central to GD pathogenesis, the process leading to this failure remains poorly understood. Two mechanisms intimately linked to tolerance have been proposed to explain the association of SNPs located in TSHR intron 1 to GD: (1) differential alternative splicing in the thyroid; and (2) modulation of expression in the thymus. To elucidate the relative contribution to these two mechanisms to GD pathogenesis, we analyzed the level of full-length and ST4 and ST5 isoform expression in the thyroid (n = 49) and thymus (n = 39) glands, and the influence of intron 1-associated SNPs on such expression. The results show that: (1) the level of flTSHR and ST4 expression in the thymus was unexpectedly high (20% that of the thyroid); (2) while flTSHR is the predominant isoform, the levels are similar to ST4 (ratio flTSHR/ST4 = 1.34 in the thyroid and ratio flTSHR/ST4 in the thymus = 1.93); (3) next-generation sequencing confirmed the effect of the TSHR intron 1 polymorphism on TSHR expression in the thymus with a bias of 1.5 ± 0.2 overexpression of the protective allele in the thymus compared to the thyroid; (4) GD-associated intron 1 SNPs did not influence TSHR alternative splicing of ST4 and ST5 in the thyroid and thymus; and (5) three-color confocal imaging showed that TSHR is associated with both thymocytes, macrophages, and dendritic cells in the thymus. Our findings confirm the effect of intron 1 polymorphisms on thymic TSHR expression and we present evidence against an effect on the relative expression of isoforms. The high level of ST4 expression in the thymus and its distribution within the tissue suggest that this would most likely be the isoform that induces central tolerance to TSHR thus omitting most of the hinge and transmembrane portion. The lack of central tolerance to a large portion of TSHR may explain the relatively high frequency of autoimmunity related to TSHR and its clinical consequence, GD.This study was funded by Instituto de Salud Carlos III, grants PI14/00848, and PI17/00324, co-financed by the European Regional Development Fund (ERDF). DÁ-S is in recipient of a predoctoral fellowship from the Vall d’Hebron Research Institute (VHIR)
    corecore