59 research outputs found

    Acute Activation of AMP-Activated Protein Kinase Prevents H2O2-Induced Premature Senescence in Primary Human Keratinocytes

    Get PDF
    We investigated the effects of AMPK on H2O2-induced premature senescence in primary human keratinocytes. Incubation with 50 µM H2O2 for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21CIP1 (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H2O2-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H2O2. As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H2O2 at low concentrations causes premature senescence in human keratinocytes by activating p53-p21CIP1 signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    Activation of the AMP-Activated Protein Kinase by Eicosapentaenoic Acid (EPA, 20:5 n-3) Improves Endothelial Function In Vivo

    Get PDF
    The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo

    Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity.</p> <p>Methods</p> <p>This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m<sup>2</sup>) recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained.</p> <p>Results</p> <p>Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32]) and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86]) than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]). A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]). Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance.</p> <p>Conclusion</p> <p>A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that contribute to metabolic status in obese individuals.</p

    Central Exercise Action Increases the AMPK and mTOR Response to Leptin

    Get PDF
    AMP-activated protein kinase (AMPK) and mammalian Target of Rapamycin (mTOR) are key regulators of cellular energy balance and of the effects of leptin on food intake. Acute exercise is associated with increased sensitivity to the effects of leptin on food intake in an IL-6-dependent manner. To determine whether exercise ameliorates the AMPK and mTOR response to leptin in the hypothalamus in an IL-6-dependent manner, rats performed two 3-h exercise bouts, separated by one 45-min rest period. Intracerebroventricular IL-6 infusion reduced food intake and pretreatment with AMPK activators and mTOR inhibitor prevented IL-6-induced anorexia. Activators of AMPK and fasting increased food intake in control rats to a greater extent than that observed in exercised ones, whereas inhibitor of AMPK had the opposite effect. Furthermore, the reduction of AMPK and ACC phosphorylation and increase in phosphorylation of proteins involved in mTOR signal transduction, observed in the hypothalamus after leptin infusion, were more pronounced in both lean and diet-induced obesity rats after acute exercise. Treatment with leptin reduced food intake in exercised rats that were pretreated with vehicle, although no increase in responsiveness to leptin-induced anorexia after pretreatment with anti-IL6 antibody, AICAR or Rapamycin was detected. Thus, the effects of leptin on the AMPK/mTOR pathway, potentiated by acute exercise, may contribute to appetite suppressive actions in the hypothalamus

    Neural processing of natural sounds

    Full text link
    Natural sounds include animal vocalizations, environmental sounds such as wind, water and fire noises and non-vocal sounds made by animals and humans for communication. These natural sounds have characteristic statistical properties that make them perceptually salient and that drive auditory neurons in optimal regimes for information transmission.Recent advances in statistics and computer sciences have allowed neuro-physiologists to extract the stimulus-response function of complex auditory neurons from responses to natural sounds. These studies have shown a hierarchical processing that leads to the neural detection of progressively more complex natural sound features and have demonstrated the importance of the acoustical and behavioral contexts for the neural responses.High-level auditory neurons have shown to be exquisitely selective for conspecific calls. This fine selectivity could play an important role for species recognition, for vocal learning in songbirds and, in the case of the bats, for the processing of the sounds used in echolocation. Research that investigates how communication sounds are categorized into behaviorally meaningful groups (e.g. call types in animals, words in human speech) remains in its infancy.Animals and humans also excel at separating communication sounds from each other and from background noise. Neurons that detect communication calls in noise have been found but the neural computations involved in sound source separation and natural auditory scene analysis remain overall poorly understood. Thus, future auditory research will have to focus not only on how natural sounds are processed by the auditory system but also on the computations that allow for this processing to occur in natural listening situations.The complexity of the computations needed in the natural hearing task might require a high-dimensional representation provided by ensemble of neurons and the use of natural sounds might be the best solution for understanding the ensemble neural code

    The relationship between serum 25-hydroxy vitamin D concentration and obesity in type 2 diabetic patients and healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both obesity and type 2 diabetes are associated with hypovitaminosis D. The aims of this study were to investigate the association of serum 25-hydroxy vitamin D (25(OH) D) and parathyroid hormone (PTH) concentration with body mass index (BMI) in type 2 diabetic patients compared to control subjects and their predicting role in obesity.</p> <p>Methods</p> <p>This cross-sectional study was conducted on 200 subjects (100 type 2 diabetics and 100 healthy controls). Concentration of 25(OH) D, calcium, phosphorous, parathyroid hormone (PTH), fasting blood glucose, HbA<sub>1</sub>c, serum insulin, homeostasis model assessment of insulin resistance (HOMA-IR) was determined in the fasting samples. Anthropometric measurements including body mass index (BMI) were also measured.</p> <p>Results</p> <p>Eighty-five percent of type 2 diabetics and 79% of healthy subjects were suffering from vitamin D deficiency or insufficiency. Serum concentration of 25(OH) D (22.08 ± 15.20 ng/ml) (r = −0.11<b>,</b> P = 0.04) and calcium (8.94 ± 0.59 mg/dl) (r = −2.25<b>,</b> P = 0.04) has significant statistically with BMI in type 2 diabetic patients. Serum concentration of PTH has non-significantly associated with BMI in diabetic patients and healthy subjects.</p> <p>Conclusion</p> <p>Serum levels of vitamin D inversely and PTH positively are associated with BMI after adjusted for age, gender and serum calcium in both type 2 diabetic patients and healthy subjects. These associations were statistically significant for serum concentration of vitamin D and calcium only in diabetic patients. So the status of vitamin D is considered as an important factor in type 2 diabetic patients.</p
    corecore