1,658 research outputs found
Drag Reduction by Polymers in Wall Bounded Turbulence
We address the mechanism of drag reduction by polymers in turbulent wall
bounded flows. On the basis of the equations of fluid mechanics we present a
quantitative derivation of the "maximum drag reduction (MDR) asymptote" which
is the maximum drag reduction attained by polymers. Based on Newtonian
information only we prove the existence of drag reduction, and with one
experimental parameter we reach a quantitative agreement with the experimental
measurements.Comment: 4 pages, 1 fig., included, PRL, submitte
Dynamic of a non homogeneously coarse grained system
To study materials phenomena simultaneously at various length scales,
descriptions in which matter can be coarse grained to arbitrary levels, are
necessary. Attempts to do this in the static regime (i.e. zero temperature)
have already been developed. In this letter, we present an approach that leads
to a dynamics for such coarse-grained models. This allows us to obtain
temperature-dependent and transport properties. Renormalization group theory is
used to create new local potentials model between nodes, within the
approximation of local thermodynamical equilibrium. Assuming that these
potentials give an averaged description of node dynamics, we calculate thermal
and mechanical properties. If this method can be sufficiently generalized it
may form the basis of a Molecular Dynamics method with time and spatial
coarse-graining.Comment: 4 pages, 4 figure
Soap Froths and Crystal Structures
We propose a physical mechanism to explain the crystal symmetries found in
macromolecular and supramolecular micellar materials. We argue that the packing
entropy of the hard micellar cores is frustrated by the entropic interaction of
their brush-like coronas. The latter interaction is treated as a surface effect
between neighboring Voronoi cells. The observed crystal structures correspond
to the Kelvin and Weaire-Phelan minimal foams. We show that these structures
are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure
Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)
Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
An evaluation of metal removal during wastewater treatment: The potential to achieve more stringent final effluent standards
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 Taylor & Francis.Metals are of particular importance in relation to water quality, and concern regarding the impact of these contaminants on biodiversity is being encapsulated within the latest water-related legislation such as the Water Framework Directive in Europe and criteria revisions to the Clean Water Act in the United States. This review undertakes an evaluation of the potential of 2-stage wastewater treatment consisting of primary sedimentation and biological treatment in the form of activated sludge processes, to meet more stringent discharge consents that are likely to be introduced as a consequence. The legislation, sources of metals, and mechanisms responsible for their removal are discussed, to elucidate possible pathways by which the performance of conventional processes may be optimized or enhanced. Improvements in effluent quality, achievable by reducing concentrations of suspended solids or biochemical oxygen demand, may also reduce metal concentrations although meeting possible requirements for the removal of copper my be challenging
Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping
The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials
Introduction. Self-monitoring of blood pressure (BP) is an increasingly common part of hypertension management. The objectives of this systematic review were to evaluate the systolic and diastolic BP reduction, and achievement of target BP, associated with self-monitoring.
Methods. MEDLINE, Embase, Cochrane database of systematic reviews, database of abstracts of clinical effectiveness, the health technology assessment database, the NHS economic evaluation database, and the TRIP database were searched for studies where the intervention included self-monitoring of BP and the outcome was change in office/ambulatory BP or proportion with controlled BP. Two reviewers independently extracted data. Meta-analysis using a random effects model was combined with meta-regression to investigate heterogeneity in effect sizes.
Results. A total of 25 eligible randomized controlled trials (RCTs) (27 comparisons) were identified. Office systolic BP (20 RCTs, 21 comparisons, 5,898 patients) and diastolic BP (23 RCTs, 25 comparisons, 6,038 patients) were significantly reduced in those who self-monitored compared to usual care (weighted mean difference (WMD) systolic −3.82 mmHg (95% confidence interval −5.61 to −2.03), diastolic −1.45 mmHg (−1.95 to −0.94)). Self-monitoring increased the chance of meeting office BP targets (12 RCTs, 13 comparisons, 2,260 patients, relative risk = 1.09 (1.02 to 1.16)). There was significant heterogeneity between studies for all three comparisons, which could be partially accounted for by the use of additional co-interventions.
Conclusion. Self-monitoring reduces blood pressure by a small but significant amount. Meta-regression could only account for part of the observed heterogeneity
Ionisation and dissociation of cometary gaseous organic molecules by solar wind particles I: Formic Acid
In order to simulate the effects of energetic charged particles present in
the solar wind colliding with the cometary gaseous formic acid molecule
(HCOOH), laboratory experiments have been performed. The absolute ionisation
and dissociation cross sections for this molecule interacting with solar wind
particles were measured employing fast electrons in the energy range of 0.5 to
2 keV and energetic protons with energies varying from 0.128 to 2 MeV. Despite
the fact that both projectiles lead to a very similar fragmentation pattern,
differences in the relative intensities of the fragments were observed. Formic
acid survives about 4-5 times more to the proton beam than to the energetic
electron collision.The minimum momentum transfer in the electron impact case
was estimated to be 3-38% larger than the minimum momentum transfer observed
with the equivelocity protons. The UV photodissociation rates and half-lives
for HCOOH are roughly closer to the values obtained with energetic electrons.
It is consequently important to take electron impact data into account when
developing chemical models to simulate the interplanetary conditions.Comment: 11 pages, 7 figures, 5 tables, Accepted to be published in MNRA
- …