41 research outputs found
Targeting the DNA damage response and repair in cancer through nucleotide metabolism
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1
Chemotherapy versus supportive care in advanced non-small cell lung cancer: improved survival without detriment to quality of life
BACKGROUND: In 1995 a meta-analysis of randomised trials investigating the value of adding chemotherapy to primary treatment for non-small cell lung cancer (NSCLC) suggested a small survival benefit for cisplatin-based chemotherapy in each of the primary treatment settings. However, the metaanalysis included many small trials and trials with differing eligibility criteria and chemotherapy regimens. METHODS: The aim of the Big Lung Trial was to confirm the survival benefits seen in the meta-analysis and to assess quality of life and cost in the supportive care setting. A total of 725 patients were randomised to receive supportive care alone (n = 361) or supportive care plus cisplatin-based chemotherapy (n = 364). RESULTS: 65% of patients allocated chemotherapy (C) received all three cycles of treatment and a further 27% received one or two cycles. 74% of patients allocated no chemotherapy (NoC) received thoracic radiotherapy compared with 47% of the C group. Patients allocated C had a significantly better survival than those allocated NoC: HR 0.77 (95% CI 0.66 to 0.89, p = 0.0006), median survival 8.0 months for the C group v 5.7 months for the NoC group, a difference of 9 weeks. There were 19 (5%) treatment related deaths in the C group. There was no evidence that any subgroup benefited more or less fromchemotherapy. No significant differences were observed between the two groups in terms of the pre-defined primary and secondary quality of life end points, although large negative effects of chemotherapy were ruled out. The regimens used proved to be cost effective, the extra cost of chemotherapy being offset by longer survival. CONCLUSIONS: The survival benefit seen in this trial was entirely consistent with the NSCLC meta-analysis and subsequent similarly designed large trials. The information on quality of life and cost should enablepatients and their clinicians to make more informed treatment choices
MTH1 inhibitor TH588 induces mitosis-dependent accumulation of genomic 8-oxodG and disturbs mitotic progression
Reactive oxygen species (ROS) oxidise nucleotide triphosphate pools (e.g., 8-oxodGTP), which may kill cells if incorporated into DNA. Whether cancers avoid poisoning from oxidised nucleotides by preventing incorporation via the oxidised purine diphosphatase MTH1 remains under debate. Also, little is known about DNA polymerases incorporating oxidised nucleotides in cells or how oxidised nucleotides in DNA become toxic. We show replacement of one of the main DNA replicases in human cells, DNA polymerase delta (Pol ÎŽ), to an error-prone variant allows increased 8-oxodG accumulation into DNA following treatment with the MTH1 inhibitor (MTH1i) TH588. The resulting elevated genomic 8-oxodG correlates with increased cytotoxicity of TH588. Interestingly, no substantial perturbation of replication fork progression is observed, but rather mitotic progression is impaired and mitotic DNA synthesis triggered. Reducing mitotic arrest by reversin treatment prevents accumulation of genomic 8-oxodG and reduces cytotoxicity of TH588, in line with the notion that mitotic arrest is required for ROS build-up and oxidation of the nucleotide pool. Furthermore, we demonstrate delayed mitosis and increased mitotic cell death following TH588 treatment in cells expressing the error-prone Pol ÎŽ variant, which is not observed following treatments with anti-mitotic agents, thus linking incorporation of oxidised nucleotides and disturbed mitotic progression
Thresholds for Arterial Wall Inflammation Quantified by 18F-FDG PET Imaging Implications for Vascular Interventional Studies
AbstractObjectivesThis study assessed 5 frequently applied arterial 18fluorodeoxyglucose (18F-FDG) uptake metrics in healthy control subjects, those with risk factors and patients with cardiovascular disease (CVD), to derive uptake thresholds in each subject group. Additionally, we tested the reproducibility of these measures and produced recommended sample sizes for interventional drug studies.Background18F-FDG positron emission tomography (PET) can identify plaque inflammation as a surrogate endpoint for vascular interventional drug trials. However, an overview of 18F-FDG uptake metrics, threshold values, and reproducibility in healthy compared with diseased subjects is not available.Methods18F-FDG PET/CT of the carotid arteries and ascending aorta was performed in 83 subjects (61 ± 8 years) comprising 3 groups: 25 healthy controls, 23 patients at increased CVD risk, and 35 patients with known CVD. We quantified 18F-FDG uptake across the whole artery, the most-diseased segment, and within all active segments over several pre-defined cutoffs. We report these data with and without background corrections. Finally, we determined measurement reproducibility and recommended sample sizes for future drug studies based on these results.ResultsAll 18F-FDG uptake metrics were significantly different between healthy and diseased subjects for both the carotids and aorta. Thresholds of physiological 18F-FDG uptake were derived from healthy controls using the 90th percentile of their target to background ratio (TBR) value (TBRmax); whole artery TBRmax is 1.84 for the carotids and 2.68 in the aorta. These were exceeded by >52% of risk factor patients and >67% of CVD patients. Reproducibility was excellent in all study groups (intraclass correlation coefficient >0.95). Using carotid TBRmax as a primary endpoint resulted in sample size estimates approximately 20% lower than aorta.ConclusionsWe report thresholds for physiological 18F-FDG uptake in the arterial wall in healthy subjects, which are exceeded by the majority of CVD patients. This remains true, independent of readout vessel, signal quantification method, or the use of background correction. We also confirm the high reproducibility of 18F-FDG PET measures of inflammation. Nevertheless, because of overlap between subject categories and the relatively small population studied, these data have limited generalizability until substantiated in larger, prospective event-driven studies. (Vascular Inflammation in Patients at Risk for Atherosclerotic Disease; NTR5006
Cell cycle profiling reveals protein oscillation, phosphorylation, and localization dynamics
The cell cycle is a highly conserved process involving the coordinated separation of a single cell into two daughter cells. To relate transcriptional regulation across the cell cycle with oscillatory changes in protein abundance and activity, we carried out a proteome- and phospho-proteome-wide mass spectrometry profiling. We compared protein dynamics with gene transcription, revealing many transcriptionally regulated G2 mRNAs that only produce a protein shift after mitosis. Integration of CRISPR/Cas9 survivability studies further highlighted proteins essential for cell viability. Analyzing the dynamics of phosphorylation events and protein solubility dynamics over the cell cycle, we characterize predicted phospho-peptide motif distributions and predict cell cycle-dependent translocating proteins, as exemplified by the S-adenosylmethionine synthase MAT2A. Our study implicates this enzyme in translocating to the nucleus after the G1/S-checkpoint, which enables epigenetic histone methylation maintenance during DNA replication. Taken together, this data set provides a unique integrated resource with novel insights on cell cycle dynamics
Ribonucleotide reductase inhibitors suppress SAMHD1 araâCTPase activity enhancing cytarabine efficacy
The deoxycytidine analogue cytarabine (araâC) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits araâC efficacy by hydrolysing the active triphosphate metabolite araâCTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1âmediated barrier to araâC efficacy in primary blasts and mouse models of AML, displaying SAMHD1âdependent synergy with araâC. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 araâCTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of araâC and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML
Crystal structures of NUDT15 variants enabled by a potent inhibitor reveal the structural basis for thiopurine sensitivity
The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic
Development of a chemical probe against NUDT15
The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues