6,854 research outputs found

    Lender forbearance

    Get PDF
    We use a threshold-based design to study ex post discretion in lenders’ contractual enforcement of covenant violations. At preset thresholds, lenders enforce contractual breaches only infrequently, but this enforcement is associated with material consequences, e.g., fees and renegotiations. Enforcement varies significantly over time and peaks when credit conditions are tightest, indicating that enforcement is procyclical. Costly coordination reduces enforcement: syndicates with ex ante restrictive voting requirements enforce at lower rates. Consistent with theories of lender competition and implicit contracting, enforcement rates are lower for borrowers with access to alternative sources of financing and well-reputed lead arrangers

    A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout

    Full text link
    We present prototype modules for a tracking detector consisting of multiple layers of 0.25 mm diameter scintillating fibers that are read out by linear arrays of silicon photomultipliers. The module production process is described and measurements of the key properties for both the fibers and the readout devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20 detected photons per minimum ionizing particle have been achieved, at a tracking efficiency of more than 98.5%. Possible techniques for further improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in Nuclear Instruments and Methods in Physics Research Section A, Vol. 62

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e., bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with VLT/FLAMES and provide the weights that characterise the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way.Comment: 18 pages, 19 figures, Accepted for publication in MNRAS (April 25, 2016

    The RAVE Survey: Constraining the Local Galactic Escape Speed

    Get PDF
    We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high velocity stars from the RAVE survey and two previously published datasets. We use cosmological simulations of disk galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range 498\kms < \ve < 608 \kms (90 per cent confidence), with a median likelihood of 544\kms. The fact that \ve^2 is significantly greater than 2\vc^2 (where \vc=220\kms is the local circular velocity) implies that there must be a significant amount of mass exterior to the Solar circle, i.e. this convincingly demonstrates the presence of a dark halo in the Galaxy. For a simple isothermal halo, one can calculate that the minimum radial extent is 58\sim58 kpc. We use our constraints on \ve to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of 1.420.54+1.14×1012M1.42^{+1.14}_{-0.54}\times10^{12}M_\odot and virial radius of 30545+66305^{+66}_{-45} kpc (90 per cent confidence). For this model the circular velocity at the virial radius is 142^{+31}_{-21}\kms. Although our halo masses are model dependent, we find that they are in good agreement with each other.Comment: 19 pages, 9 figures, MNRAS (accepted). v2 incorporates minor cosmetic revisions which have no effect on the results or conclusion

    The Gaia-ESO Survey: a quiescent Milky Way with no significant dark/stellar accreted disc

    Get PDF
    According to our current cosmological model, galaxies like the Milky Way are expected to experience many mergers over their lifetimes. The most massive of the merging galaxies will be dragged towards the disc-plane, depositing stars and dark matter into an accreted disc structure. In this work, we utilize the chemo-dynamical template developed in Ruchti et al. to hunt for accreted stars. We apply the template to a sample of 4,675 stars in the third internal data release from the Gaia-ESO Spectroscopic Survey. We find a significant component of accreted halo stars, but find no evidence of an accreted disc component. This suggests that the Milky Way has had a rather quiescent merger history since its disc formed some 8-10 billion years ago and therefore possesses no significant dark matter disc.Comment: 15 pages, 11 figures, accepted for publication in MNRA

    The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk

    Get PDF
    We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.Comment: accepted for publication in A&

    The Gaia-ESO survey: A quiescent milky way with no significant dark/stellar accreted disc

    Get PDF
    According to our current cosmological model, galaxies like the Milky Way are expected to experience many mergers over their lifetimes. The most massive of the merging galaxies will be dragged towards the disc plane, depositing stars and dark matter into an accreted disc structure. In this work, we utilize the chemodynamical template developed in Ruchti et al. to hunt for accreted stars. We apply the template to a sample of 4675 stars in the third internal data release from the Gaia-ESO Spectroscopic Survey. We find a significant component of accreted halo stars, but find no evidence of an accreted disc component. This suggests that the Milky Way has had a rather quiescent merger history since its disc formed some 8-10 billion years ago and therefore possesses no significant dark matter disc

    Thick disk kinematics from RAVE and the solar motion

    Get PDF
    Radial velocity surveys such as the Radial Velocity Experiment (RAVE) provide us with measurements of hundreds of thousands of nearby stars most of which belong to the Galactic thin, thick disk or halo. Ideally, to study the Galactic disks (both thin and thick) one should make use of the multi-dimensional phase-space and the whole pattern of chemical abundances of their stellar populations. In this paper, with the aid of the RAVE Survey, we study the thin and thick disks of the Milky Way, focusing on the latter. We present a technique to disentangle the stellar content of the two disks based on the kinematics and other stellar parameters such as the surface gravity of the stars. Using the Padova Galaxy Model, we checked the ability of our method to correctly isolate the thick disk component from the Galaxy mixture of stellar populations. We introduce selection criteria in order to clean the observed radial velocities from the Galactic differential rotation and to take into account the partial sky coverage of RAVE. We developed a numerical technique to statistically disentangle thin and thick disks from their mixture. We deduce the components of the solar motion relative to the Local Standard of Rest (LSR) in the radial and vertical direction, the rotational lag of the thick disk component relative to the LSR, and the square root of the absolute value of the velocity dispersion tensor for the thick disk alone. The analysis of the thin disk is presented in another paper. We find good agreement with previous independent parameter determinations. In our analysis we used photometrically determined distances. In the Appendix we show that similar values can be found for the thick disk alone as derived in the main sections of our paper even without the knowledge of photometric distances.Comment: accepted on A&A, please see companion paper "THIN disk kinem...

    Local stellar kinematics from RAVE data: III. Radial and Vertical Metallicity Gradients based on Red Clump Stars

    Get PDF
    We investigate radial and vertical metallicity gradients for a sample of red clump stars from the RAdial Velocity Experiment (RAVE) Data Release 3. We select a total of 6781 stars, using a selection of colour, surface gravity and uncertainty in the derived space motion, and calculate for each star a probabilistic (kinematic) population assignment to a thin or thick disc using space motion and additionally another (dynamical) assignment using stellar vertical orbital eccentricity. We derive almost equal metallicity gradients as a function of Galactocentric distance for the high probability thin disc stars and for stars with vertical orbital eccentricities consistent with being dynamically young, e_v<=0.07, i.e. d[M/H]/dR_m = -0.041(0.003) and d[M/H]/dR_m = -0.041(0.007) dex/kpc. Metallicity gradients as a function of distance from the Galactic plane for the same populations are steeper, i.e. d[M/H]/dz_{max} = -0.109(0.008) and d[M/H]/dz_{max} = -0.260(0.031) dex/kpc, respectively. R_m and z_{max} are the arithmetic mean of the perigalactic and apogalactic distances, and the maximum distance to the Galactic plane, respectively. Samples including more thick disc red clump giant stars show systematically shallower abundance gradients. These findings can be used to distinguish between different formation scenarios of the thick and thin discs.Comment: 27 pages, including 15 figures and 4 tables, accepted for publication in MNRA

    The Gaia-ESO survey: Radial metallicity gradients and age-metallicity relation of stars in the milky way disk

    Get PDF
    We study the relationship between age, metallicity, and α-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the ob
    corecore