15 research outputs found

    Variations in the Flow Approach to CFCLP-TC for Multiobjective Supply Chain Design

    Get PDF
    We review the problem for the design of supply chains called Capacitated Fixed Cost Facility Location Problem with Transportation Choices (CFCLP-TC). The problem is based on a production network of two echelons with multiple plants, a set of potential distribution centers, and customers. The problem is formulated as an optimization model with two objective functions based on time and cost. This paper proposes three changes to the original model to compare the sets of efficient solutions and the computational time required to obtain them. The main contribution of this paper is to extend the existing literature by incorporating approaches for the supply of product to customers through multiple sources, the direct flow between plants and customers, without this necessarily implying removing the distribution centers, and the product flow between distribution centers. From these approaches, we generate mathematical programming models and propose to solve through the epsilon-constraint approach for generating Pareto fronts and thus compare each of these approaches with the original model. The models are implemented in GAMS and solved with CPLEX

    Adaptive Neural Trajectory Tracking Control for Synchronous Generators in Interconnected Power Systems

    No full text
    The synchronous generator is one of the most important active components in current electric power systems. New control methods should be designed to guarantee an efficient dynamic performance of the synchronous generator in strongly interconnected nonlinear power systems over a wide range of variable operating conditions. In this context, active suppression capability for different uncertainties and external disturbances represents a current trend in the development of new control design methodologies. In this paper, a new adaptive neural control scheme based on differential flatness with a modified structure including B-spline Neural Networks for transient stabilization and tracking of power-angle reference profiles for synchronous generators in interconnected electric power systems is introduced. These features are attained due to the advantages extracted of these two approaches: (a) a control design stage based on a power system model by differential flatness and (b) an adaptive performance using a correct design of B-spline Neural Networks, minimizing parameter dependency. The effectiveness of the proposed algorithm is demonstrated by simulation results in two test systems: single machine infinite bus and an interconnected power system. Transient stability and robust power-angle reference profile tracking are both verified

    Comparison and Ranking of Metaheuristic Techniques for Optimization of PI Controllers in a Machine Drive System

    No full text
    Proportional integral (PI) control is still the most widely deployed controller in the industrial drives due to its simplicity and the fact that it is easy to understand and implement. Nevertheless, they are successes applied to systems with a complex behavior with a nonlinear representation, but a disadvantage is the procedure to find the optimal PI controller gains. The optimal values of PI parameters must be computed during the tuning process. However, traditional tuning techniques are based on model and do not provide optimal adjustment parameters for the PI controllers because the transient response could produce oscillations and a large overshoot. In this paper, six swarm intelligence-based algorithms (whale, moth-flame, flower pollination, dragonfly, cuckoo search, and modified flower pollination), are correctly conditioned and delimited to tune the PI controllers, the results are probed in a typical industry actuator. Also, a rigorous study is developed to evaluate the quality and reliability of these algorithms by a statistical analysis based on non-parametric test and post-hoc test. Finally, with the obtained results, some time simulations are carried out to corroborate that the nonlinear system performance is improved for high precision industrial applications subjected to endogenous and exogenous uncertainties in a wide range of operating conditions

    Adaptive Neural Motion Control of a Quadrotor UAV

    No full text
    Unmanned Aerial Vehicles have generated considerable interest in different research fields. The motion control problem is among the most important issues to be solved since system dynamic stability depends on the robustness of the main controller against endogenous and exogenous disturbances. In spite of different controllers have been introduced in the literature for motion control of fixed and rotary wing vehicles, there are some challenges for improving controller features such as simplicity, robustness, efficiency, adaptability, and stability. This paper outlines a novel approach to deal with the induced effects of external disturbances affecting the flight of a quadrotor unmanned aerial vehicle. The aim of our study is to further extend the current knowledge of quadrotor motion control by using both adaptive and robust control strategies. A new adaptive neural trajectory tracking control strategy based on B-spline artificial neural networks and on-line disturbance estimation for a quadrotor is proposed. A linear extended state observer is used for estimating time-varying disturbances affecting the controlled nonlinear system dynamics. B-spline artificial neural networks are properly synthesized for on-line calculating control gains of an adaptive Proportional Integral Derivative (PID) scheme. Simulation results highlight the implementation of such a controller is able to reject disturbances meanwhile perform proper motion control by exploiting the robustness, disturbance rejection, adaptability, and self-learning capabilities

    An Adaptive Speed Control Approach for DC Shunt Motors

    No full text
    A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach

    Variations in the Flow Approach to CFCLP-TC for Multiobjective Supply Chain Design

    No full text
    We review the problem for the design of supply chains called Capacitated Fixed Cost Facility Location Problem with Transportation Choices (CFCLP-TC). The problem is based on a production network of two echelons with multiple plants, a set of potential distribution centers, and customers. The problem is formulated as an optimization model with two objective functions based on time and cost. This paper proposes three changes to the original model to compare the sets of efficient solutions and the computational time required to obtain them. The main contribution of this paper is to extend the existing literature by incorporating approaches for the supply of product to customers through multiple sources, the direct flow between plants and customers, without this necessarily implying removing the distribution centers, and the product flow between distribution centers. From these approaches, we generate mathematical programming models and propose to solve through the epsilon-constraint approach for generating Pareto fronts and thus compare each of these approaches with the original model. The models are implemented in GAMS and solved with CPLEX

    Neuroadaptive Robust Speed Control for PMSM Servo Drives with Rotor Failure

    No full text
    In this paper, a neuroadaptive robust trajectory tracking controller is utilized to reduce speed ripples of permanent magnet synchronous machine (PMSM) servo drive under the presence of a fracture or fissure in the rotor and external disturbances. The dynamics equations of PMSM servo drive with the presence of a fracture and unknown frictions are described in detail. Due to inherent nonlinearities in PMSM dynamic model, in addition to internal and external disturbances; a traditional PI controller with fixed parameters cannot correctly regulate the PMSM performance under these scenarios. Hence, a neuroadaptive robust controller (NRC) based on a category of on-line trained artificial neural network is used for this purpose to enhance the robustness and adaptive abilities of traditional PI controller. In this paper, the moth-flame optimization algorithm provides the optimal weight parameters of NRC and three PI controllers (off-line) for a PMSM servo drive. The performance of the NRC is evaluated in the presence of a fracture, unknown frictions, and load disturbances, likewise the result outcomes are contrasted with a traditional optimized PID controller and an optimal linear state feedback method

    Optimal Economic Dispatch in Microgrids with Renewable Energy Sources

    No full text
    Due to the opening of the energy market and agreements for the reduction of pollution emissions, the use of microgrids attracts more attention in the scientific community, but the management of the distribution of electricity has new challenges. This paper considers different distributed generation systems as a main part to design a microgrid and the resources management is defined in a period through proposed dynamic economic dispatch approach. The inputs are obtained by the model predictive control algorithm considering variations of both pattern of consumption and generation systems capacity, including conventional and renewable energy sources. Furthermore, the proposed approach considers a benefits program to customers involving a demand restriction and the costs of regeneration of the pollutants produced by conventional generation systems. The dispatch strategy through a mathematical programming approach seeks to reduce to the minimum the fuel cost of conventional generators, the energy transactions, the regeneration of polluted emissions and, finally, includes the benefit in electricity demand reduction satisfying all restrictions through mathematical programming strategy. The model is implemented in LINGO 17.0 software (Lindo Systems, 1415 North Dayton Street, Chicago, IL, USA). The results exhibit the proposed approach effectiveness through a study case under different considerations

    Adaptive Robust Motion Control of Quadrotor Systems Using Artificial Neural Networks and Particle Swarm Optimization

    No full text
    Most of the mechanical dynamic systems are subjected to parametric uncertainty, unmodeled dynamics, and undesired external vibrating disturbances while are motion controlled. In this regard, new adaptive and robust, advanced control theories have been developed to efficiently regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable disturbances. In this work, a novel adaptive robust neural control design approach for efficient motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion tracking errors are then used for designing a baseline controller with adaptive capabilities provided by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control scheme, measurements of position signals are only required. Moreover, real-time accurate estimation of time-varying disturbances and time derivatives of error signals are unnecessary. Integral reconstructors of velocity error signals are properly integrated in the output error signal feedback control scheme. In addition, the appropriate combination of several mathematical tools, such as particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series expansions, are advantageously exploited in the proposed control design perspective. In this fashion, the present contribution introduces a new adaptive desired motion tracking control solution based on B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear systems. Several numeric experiments were performed to assess and highlight the effectiveness of the adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to undesired vibrating disturbances. Experiments include important scenarios that commonly face the quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while acceptable attenuation levels of vibrating disturbances are exhibited

    Neural Adaptive Robust Motion-Tracking Control for Robotic Manipulator Systems

    No full text
    This paper deals with the motion trajectory tracking control problem based on output feedback and artificial neural networks for anthropomorphic manipulator robots under disturbed operating scenarios. This class of manipulator robots constitutes nonlinear dynamic systems subjected to disturbance torques induced mainly by work payload. Parametric uncertainty and possible dynamic modeling errors stand for other kind of disturbances that can deteriorate the efficiency and robustness of the tracking of controlled nonlinear robotic system trajectories. In fact, the presence of unknown dynamic disturbances is unavoidable in industrial robotic engineering systems. Therefore, for high-precision applications, such as laser cutting, marking, or welding, effective control schemes should be designed to guarantee adequate motion profile tracking planned on this class of disturbed nonlinear robotic system. In this context, a new adaptive robust motion trajectory tracking control scheme based on output feedback and artificial neural networks of anthropomorphic manipulator robots is presented. Three-layer B-spline artificial neural networks and time-series modeling are properly exploited in the design of novel adaptive robust motion tracking controllers for robotic applications of laser manufacturing. In this way, dependency on detailed nonlinear mathematical modeling of robotic systems is considerably reduced, and real-time estimation of uncertain dynamic disturbances is not required. Furthermore, several cases studies to demonstrate the motion planning tracking control robustness for a class of MIMO nonlinear robotic systems are described. blue Insights for the extension of the introduced output-feedback adaptive neural control design approach for other architecture of nonlinear robotic systems are depicted
    corecore