30 research outputs found
Diurnal emissivity dynamics in bare versus biocrusted sand dunes
Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for
areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the IsraelâEgypt political borderline.
Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture
from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 ÎŒm channel. This phenomenon is attributed to water vapor adsorption
by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a
large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as âDigital Twinâ. This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring
Reviews and syntheses:Remotely sensed optical time series for monitoring vegetation productivity
International audienceAbstract. Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time; reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include e.g., gross primary productivity, net primary productivity, biomass or yield. To summarize current knowledge, in this paper, we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVM). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS-data derived productivity metrics: (1) using in situ measured data, such as yield, (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras, and (3) inter-comparison of different productivity products or modelled estimates. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully-integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and also enhances the accuracy of vegetation productivity monitoring
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring
Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions
Linking Spaceborne and Ground Observations of Autumn Foliage Senescence in Southern Québec, Canada
Autumn senescence progresses over several weeks during which leaves change their colors. The onset of leaf coloring and its progression have environmental and economic consequences, however, very few efforts have been devoted to monitoring regional foliage color change in autumn using remote sensing imagery. This study aimed to monitor the progression of autumn phenology using satellite remote sensing across a region in Southern QuĂ©bec, Canada, where phenological observations are frequently performed in autumn across a large number of sites, and to evaluate the satellite retrievals against these in-situ observations. We used a temporally-normalized time-series of Normalized Difference Vegetation Index (NDVI) extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery to monitor the different phases of autumn foliage during 2011â2015, and compared the results with ground observations from 38 locations. Since the NDVI time-series is separately normalized per pixel, the outcome is a time-series of foliage coloration status that is independent of the land cover. The results show a significant correlation between the timing of peak autumn coloration to elevation and latitude, but not to longitude, and suggest that temperature is likely a main driver of variation in autumn foliage progression. The interannual coloration phase differences for MODIS retrievals are larger than for ground observations, but most ground site observations correlate significantly with MODIS retrievals. The mean absolute error for the timing of all foliage phases is smaller than the frequency of both ground observation reports and the frequency of the MODIS NDVI time-series, and therefore considered acceptable. Despite this, the observations at four of the ground sites did not correspond well with the MODIS retrievals, and therefore we conclude that further methodological refinements to improve the quality of the time series are required for MODIS spatial monitoring of autumn phenology over QuĂ©bec to be operationally employed in a reliable manner
Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2
Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8AâNarrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI â 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs
In-Field Absolute Calibration of Ground and Airborne VIS-NIR-SWIR Hyperspectral Point Spectrometers
Spectrometer calibration and measurements of spectral radiance are often required when performing ground, aerial, and space measurements. While calibrating a spectrometer in the field using an integrating sphere is practically unachievable, calibration against a quartz halogen (QH) lamp is a quite easy and feasible option. We describe a calibration protocol whereby a professional QH lamp, operating with a stabilized current source, is first calibrated in the laboratory against a US National Institute of Standards and Technology (NIST) traceable integrating sphere and, then, used for the field calibration of a spectrometer before a ground or airborne campaign. Another advantage of the lamp over the integrating sphere is its ability to create a continuous calibration curve at the spectrometer resolution, while the integrating sphere is calibrated only for a few discrete wavelengths. A calibrated lamp could also be used for a secondary continuous calibration of an un-calibrated integrating sphere
Mapping Surface Quartz Content in Sand Dunes Covered by Biological Soil Crusts Using Airborne Hyperspectral Images in the Longwave Infrared Region
Biological soil crusts (BSCs), composed of cyanobacteria, algae, mosses, lichens, and fungi, are important ecosystem engineers that stabilize the quartz-rich dunes in the Nitzana study area near the Israel–Egypt border. The longwave infrared (LWIR) region of the electromagnetic spectrum is very useful for quartz identification since quartz reflectance in the visible, near infrared, and shortwave infrared (VIS-NIR-SWIR, 0.4–2.5 µm) spectral regions lacks identifying features, whereas in the LWIR region, the quartz emissivity spectrum presents a strong doublet feature. This emissivity feature can be used as a diagnostic tool for BSCs development in desert environments, because BSCs attenuate the quartz feature as a function of their successional development. A pair of day and night airborne hyperspectral images were acquired using the Specim AisaOWL LWIR sensor (7.7–12 µm) and processed using an innovative algorithm to reduce the atmospheric interference in this spectral domain. The resulting day and night apparent emissivity products were used to produce a surface quartz content map of the study area. The significant reduction in atmospheric interference resulted in a high correlation (R2 = 0.88) between quartz content in field samples determined by X-ray powder diffraction analysis and emissivity estimations from the airborne images. This, in turn, served as the ground truth to our quartz content map of the surface, and by proxy to the BSC
Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm
Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS