10 research outputs found
Converse Edmundson-Lah-RibariÄ inequalities and related results
Definirat Äe se nova klasa funkcija koja proÅ”iruje klasu 3-konveksnih funkcija za koju Äe se dokazati generalizacija Levinsonovog tipa Edmundson-Lah-RibariÄeve nejednakosti. Dokazat Äe se da analogne generalizacije vrijede i za Edmundson-Lah-RibariÄevu nejednakost za hermitske operatore u Hilbertovom prostoru, te za skalarni produkt istih. Dalje, promatrat Äe se Jensenova i Edmundson-Lah-RibariÄeva nejednakost za linearne funkcionale. Dobit Äe se njihovi obrati u obliku razlike, kao i profinjenja i poboljÅ”anja spomenutih obrata. Dobiveni rezultati primijenit Äe se na generalizirane sredine i na neke poznate nejednakosti (Hƶlderovu, Hermite-Hadamardovu, Giaccardijevu i PetroviÄevu nejednakost). Dobit Äe se i obrati Jensenove i Edmundson-Lah-RibariÄeve operatorske nejednakosti, kao i daljnja profinjenja i poboljÅ”anja istih. Dobiveni opÄi rezultati primijenit Äe se na kvazi-aritmetiÄke operatorske sredine, te na potencijalne operatorske sredine. TakoÄer Äe se dobiti i obrati Andove i Davis-Choijeve nejednakosti za pozitivna linearna preslikavanja, te Edmundson-Lah-RibariÄeva nejednakost i njen obrat u obliku razlike za pozitivna linearna preslikavanja. Dokazat Äe se i obrati u obliku razlike i kvocijenta za poseban tip poopÄenih koneksija - solidarities koji ukljuÄuje i koneksije, te za relativnu operatorsku entropiju.A new class of functions that extends the class of 3-convex functions will be defined, and Levinsonās type generalization of the Edmundson-Lah-RibariÄ inequality will be proved for those functions. Analogue generalizations of the Edmundson-Lah-RibariÄ inequality for self-adjoint operators in Hilbert space and for their scalar product will be proved. Next, inequalities of Jensen and Edmundson-Lah-RibariÄ for positive linear functionals will be studied. New inequalities of difference type, as well as their refinements and improvements, will be obtained. These results will be applied to generalized means and some famous inequalities (the ones of Hƶlder, Hermite-Hadamard, Giaccardi and PetroviÄ). Further, converses of the Jensen and Edmundson-Lah-RibariÄ operator inequalities and their refinements and improvements will be obtained. General results will be applied to quasi-arithmetic operator means and to potential operator means. Finally, converses of Andoās and Davis-Choiās inequality, as well as the Edmundson-Lah-RibariÄ and its converse of difference type for positive unital mappings, will be studied. Ratio and difference type converses will be proved for a special type of solidarities which includes connections, and for relative operator entropy
Converse Edmundson-Lah-RibariÄ inequalities and related results
Definirat Äe se nova klasa funkcija koja proÅ”iruje klasu 3-konveksnih funkcija za koju Äe se dokazati generalizacija Levinsonovog tipa Edmundson-Lah-RibariÄeve nejednakosti. Dokazat Äe se da analogne generalizacije vrijede i za Edmundson-Lah-RibariÄevu nejednakost za hermitske operatore u Hilbertovom prostoru, te za skalarni produkt istih. Dalje, promatrat Äe se Jensenova i Edmundson-Lah-RibariÄeva nejednakost za linearne funkcionale. Dobit Äe se njihovi obrati u obliku razlike, kao i profinjenja i poboljÅ”anja spomenutih obrata. Dobiveni rezultati primijenit Äe se na generalizirane sredine i na neke poznate nejednakosti (Hƶlderovu, Hermite-Hadamardovu, Giaccardijevu i PetroviÄevu nejednakost). Dobit Äe se i obrati Jensenove i Edmundson-Lah-RibariÄeve operatorske nejednakosti, kao i daljnja profinjenja i poboljÅ”anja istih. Dobiveni opÄi rezultati primijenit Äe se na kvazi-aritmetiÄke operatorske sredine, te na potencijalne operatorske sredine. TakoÄer Äe se dobiti i obrati Andove i Davis-Choijeve nejednakosti za pozitivna linearna preslikavanja, te Edmundson-Lah-RibariÄeva nejednakost i njen obrat u obliku razlike za pozitivna linearna preslikavanja. Dokazat Äe se i obrati u obliku razlike i kvocijenta za poseban tip poopÄenih koneksija - solidarities koji ukljuÄuje i koneksije, te za relativnu operatorsku entropiju.A new class of functions that extends the class of 3-convex functions will be defined, and Levinsonās type generalization of the Edmundson-Lah-RibariÄ inequality will be proved for those functions. Analogue generalizations of the Edmundson-Lah-RibariÄ inequality for self-adjoint operators in Hilbert space and for their scalar product will be proved. Next, inequalities of Jensen and Edmundson-Lah-RibariÄ for positive linear functionals will be studied. New inequalities of difference type, as well as their refinements and improvements, will be obtained. These results will be applied to generalized means and some famous inequalities (the ones of Hƶlder, Hermite-Hadamard, Giaccardi and PetroviÄ). Further, converses of the Jensen and Edmundson-Lah-RibariÄ operator inequalities and their refinements and improvements will be obtained. General results will be applied to quasi-arithmetic operator means and to potential operator means. Finally, converses of Andoās and Davis-Choiās inequality, as well as the Edmundson-Lah-RibariÄ and its converse of difference type for positive unital mappings, will be studied. Ratio and difference type converses will be proved for a special type of solidarities which includes connections, and for relative operator entropy
Converse Edmundson-Lah-RibariÄ inequalities and related results
Definirat Äe se nova klasa funkcija koja proÅ”iruje klasu 3-konveksnih funkcija za koju Äe se dokazati generalizacija Levinsonovog tipa Edmundson-Lah-RibariÄeve nejednakosti. Dokazat Äe se da analogne generalizacije vrijede i za Edmundson-Lah-RibariÄevu nejednakost za hermitske operatore u Hilbertovom prostoru, te za skalarni produkt istih. Dalje, promatrat Äe se Jensenova i Edmundson-Lah-RibariÄeva nejednakost za linearne funkcionale. Dobit Äe se njihovi obrati u obliku razlike, kao i profinjenja i poboljÅ”anja spomenutih obrata. Dobiveni rezultati primijenit Äe se na generalizirane sredine i na neke poznate nejednakosti (Hƶlderovu, Hermite-Hadamardovu, Giaccardijevu i PetroviÄevu nejednakost). Dobit Äe se i obrati Jensenove i Edmundson-Lah-RibariÄeve operatorske nejednakosti, kao i daljnja profinjenja i poboljÅ”anja istih. Dobiveni opÄi rezultati primijenit Äe se na kvazi-aritmetiÄke operatorske sredine, te na potencijalne operatorske sredine. TakoÄer Äe se dobiti i obrati Andove i Davis-Choijeve nejednakosti za pozitivna linearna preslikavanja, te Edmundson-Lah-RibariÄeva nejednakost i njen obrat u obliku razlike za pozitivna linearna preslikavanja. Dokazat Äe se i obrati u obliku razlike i kvocijenta za poseban tip poopÄenih koneksija - solidarities koji ukljuÄuje i koneksije, te za relativnu operatorsku entropiju.A new class of functions that extends the class of 3-convex functions will be defined, and Levinsonās type generalization of the Edmundson-Lah-RibariÄ inequality will be proved for those functions. Analogue generalizations of the Edmundson-Lah-RibariÄ inequality for self-adjoint operators in Hilbert space and for their scalar product will be proved. Next, inequalities of Jensen and Edmundson-Lah-RibariÄ for positive linear functionals will be studied. New inequalities of difference type, as well as their refinements and improvements, will be obtained. These results will be applied to generalized means and some famous inequalities (the ones of Hƶlder, Hermite-Hadamard, Giaccardi and PetroviÄ). Further, converses of the Jensen and Edmundson-Lah-RibariÄ operator inequalities and their refinements and improvements will be obtained. General results will be applied to quasi-arithmetic operator means and to potential operator means. Finally, converses of Andoās and Davis-Choiās inequality, as well as the Edmundson-Lah-RibariÄ and its converse of difference type for positive unital mappings, will be studied. Ratio and difference type converses will be proved for a special type of solidarities which includes connections, and for relative operator entropy
Seminars in Statistics in MS Excel
Ovaj priruÄnik prikazuje naÄin rjeÅ”avanja problema statistiÄke analize podataka koji se prouÄavaju u sklopu kolegija āStatistikaā u svrhu njihove lakÅ”e analize pomoÄu programa MS Excel koriÅ”tenjem statistiÄkih funkcija ili alata āAnaliza podatakaā. ObraÄuju se osnovni pojmovi deskriptivne statistike (grafiÄki prikazi, mjere centralne tendencije i mjere rasprÅ”enosti podataka), i osnove inferencijalne statistike s težiÅ”tem na linearnoj regresiji i testiranju hipoteza.This manual shows how to solve problems of statistical analysis that are studied as part of the course "Statistics" for the purpose of their easier analysis with the MS Excel software using statistical functions or the "Data Analysis" tool. The basic concepts of descriptive statistics (graphical representations, measures of central tendency and measures of dispersion) and the basics of inferential statistics with a focus on linear regression and hypothesis testing are covered
Seminars in Statistics in MS Excel
Ovaj priruÄnik prikazuje naÄin rjeÅ”avanja problema statistiÄke analize podataka koji se prouÄavaju u sklopu kolegija āStatistikaā u svrhu njihove lakÅ”e analize pomoÄu programa MS Excel koriÅ”tenjem statistiÄkih funkcija ili alata āAnaliza podatakaā. ObraÄuju se osnovni pojmovi deskriptivne statistike (grafiÄki prikazi, mjere centralne tendencije i mjere rasprÅ”enosti podataka), i osnove inferencijalne statistike s težiÅ”tem na linearnoj regresiji i testiranju hipoteza.This manual shows how to solve problems of statistical analysis that are studied as part of the course "Statistics" for the purpose of their easier analysis with the MS Excel software using statistical functions or the "Data Analysis" tool. The basic concepts of descriptive statistics (graphical representations, measures of central tendency and measures of dispersion) and the basics of inferential statistics with a focus on linear regression and hypothesis testing are covered
Jensen-type inequalities on time scales for n-convex functions
In this paper, the authors establish some lower and upper bounds for the difference in the Edmundson-Lah-RibariÄ inequality in time scales calculus that holds for the class of n-convex functions by utilizing some scalar inequalities obtained via Hermite's interpolating polynomial. In addition, the authors also establish different lower and upper bounds for the difference in the Jensen inequality as a byproduct from the results of the Edmundson-Lah-RibariÄ inequality. The main results are applied to obtain new converse inequalities for generalized means and power means in the time scale settings
Converses of the Edumundson-Lah-RibariÄ inequality for generalized CsiszĆ”r divergence with applications to Zipf-Mandelbrot law
Summary: "In this paper we obtain some estimates for the generalized f-divergence functional via converses of the Jensen and Edmundson-Lah-RibariÄ inequalities for convex functions, and then we obtain some estimates for the Kullback-Leibler divergence. All of the obtained results are applied to Zipf-Mandelbrot law and Zipf law.