16 research outputs found

    De novo variants in CACNA1E found in patients with intellectual disability, developmental regression and social cognition deficit but no seizures

    Get PDF
    Background De novo variants in the voltage-gated calcium channel subunit α1 E gene (CACNA1E) have been described as causative of epileptic encephalopathy with contractures, macrocephaly and dyskinesias. Methods Following the observation of an index patient with developmental delay and autism spectrum disorder (ASD) without seizures who had a de novo deleterious CACNA1E variant, we screened GeneMatcher for other individuals with CACNA1E variants and neurodevelopmental phenotypes without epilepsy. The spectrum of pathogenic CACNA1E variants was compared to the mutational landscape of variants in the gnomAD control population database. Results We identified seven unrelated individuals with intellectual disability, developmental regression and ASD-like behavioral profile, and notably without epilepsy, who had de novo heterozygous putatively pathogenic variants in CACNA1E. Age of onset of clinical manifestation, presence or absence of regression and degree of severity were variable, and no clear-cut genotype–phenotype association could be recognized. The analysis of disease-associated variants and their comparison to benign variants from the control population allowed for the identification of regions in the CACNA1E protein that seem to be intolerant to substitutions and thus more likely to harbor pathogenic variants. As in a few reported cases with CACNA1E variants and epilepsy, one patient showed a positive clinical behavioral response to topiramate, a specific calcium channel modulator. Limitations The significance of our study is limited by the absence of functional experiments of the effect of identified variants, the small sample size and the lack of systematic ASD assessment in all participants. Moreover, topiramate was given to one patient only and for a short period of time. Conclusions Our results indicate that CACNA1E variants may result in neurodevelopmental disorders without epilepsy and expand the mutational and phenotypic spectrum of this gene. CACNA1E deserves to be included in gene panels for non-specific developmental disorders, including ASD, and not limited to patients with seizures, to improve diagnostic recognition and explore the possible efficacy of topiramate

    Whole genome sequencing as a means to assess pathogenic mutations in medical genetics and cancer

    No full text
    The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer

    CNV Detection from Exome Sequencing Data in Routine Diagnostics of Rare Genetic Disorders: Opportunities and Limitations

    No full text
    To assess the potential of detecting copy number variations (CNVs) directly from exome sequencing (ES) data in diagnostic settings, we developed a CNV-detection pipeline based on ExomeDepth software and applied it to ES data of 450 individuals. Initially, only CNVs affecting genes in the requested diagnostic gene panels were scored and tested against arrayCGH results. Pathogenic CNVs were detected in 18 individuals. Most detected CNVs were larger than 400 kb (11/18), but three individuals had small CNVs impacting one or a few exons only and were thus not detectable by arrayCGH. Conversely, two pathogenic CNVs were initially missed, as they impacted genes not included in the original gene panel analysed, and a third one was missed as it was in a poorly covered region. The overall combined diagnostic rate (SNVs + CNVs) in our cohort was 36%, with wide differences between clinical domains. We conclude that (1) the ES-based CNV pipeline detects efficiently large and small pathogenic CNVs, (2) the detection of CNV relies on uniformity of sequencing and good coverage, and (3) in patients who remain unsolved by the gene panel analysis, CNV analysis should be extended to all captured genes, as diagnostically relevant CNVs may occur everywhere in the genome

    DOMINO: Using Machine Learning to Predict Genes Associated with Dominant Disorders.

    Get PDF
    In contrast to recessive conditions with biallelic inheritance, identification of dominant (monoallelic) mutations for Mendelian disorders is more difficult, because of the abundance of benign heterozygous variants that act as massive background noise (typically, in a 400:1 excess ratio). To reduce this overflow of false positives in next-generation sequencing (NGS) screens, we developed DOMINO, a tool assessing the likelihood for a gene to harbor dominant changes. Unlike commonly-used predictors of pathogenicity, DOMINO takes into consideration features that are the properties of genes, rather than of variants. It uses a machine-learning approach to extract discriminant information from a broad array of features (N = 432), including: genomic data, intra-, and interspecies conservation, gene expression, protein-protein interactions, protein structure, etc. DOMINO's iterative architecture includes a training process on 985 genes with well-established inheritance patterns for Mendelian conditions, and repeated cross-validation that optimizes its discriminant power. When validated on 99 newly-discovered genes with pathogenic mutations, the algorithm displays an excellent final performance, with an area under the curve (AUC) of 0.92. Furthermore, unsupervised analysis by DOMINO of real sets of NGS data from individuals with intellectual disability or epilepsy correctly recognizes known genes and predicts 9 new candidates, with very high confidence. In summary, DOMINO is a robust and reliable tool that can infer dominance of candidate genes with high sensitivity and specificity, making it a useful complement to any NGS pipeline dealing with the analysis of the morbid human genome

    Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity

    No full text
    We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance

    Brief Report: Peripheral Osteolysis in Adults Linked to ASAH1 (Acid Ceramidase) Mutations: A New Presentation of Farber's Disease

    No full text
    To establish a diagnosis and provide counseling and treatment for 3 adult patients from one family presenting with peripheral osteolysis.; Following clinical and radiographic assessment, exome sequencing, targeted gene resequencing, and determination of enzyme activity in cultured fibroblasts were performed.; The proband (age 40 years) had a history of episodic fever and pain in childhood that subsided around puberty. He and 2 of his older sisters (ages 58 and 60 years, respectively) showed adult-onset progressive shortening of fingers and toes with redundancy of the overlying skin. Radiographs showed severe osteolysis of the distal radius and ulna, carpal bones, metacarpal bones, and phalanges. Sequencing of the known genes for recessively inherited osteolysis, MMP2 and MMP14, failed to show pathogenic mutations. Exome sequencing revealed compound heterozygosity for mutations c.505T>C (p.Trp169Arg) and c.760A>G (p.Arg254Gly) in ASAH1, the gene coding for acid ceramidase. Sanger sequencing confirmed correct segregation in the family, and enzyme activity in fibroblast cultures from the patients was reduced to ∼8% of that in controls, confirming a diagnosis of Farber's disease.; Our findings indicate that hypomorphic mutations in ASAH1 may result in an osteoarticular phenotype with a juvenile phase resembling rheumatoid arthritis that evolves to osteolysis as the final stage in the absence of neurologic signs. This observation delineates a novel type of recessively inherited peripheral osteolysis and illustrates the long-term skeletal manifestations of acid ceramidase deficiency (Farber's disease) in what appear to be the oldest affected individuals known so far

    Brief Report: Peripheral Osteolysis in Adults Linked to ASAH1

    No full text
    To establish a diagnosis and provide counseling and treatment for 3 adult patients from one family presenting with peripheral osteolysis.; Following clinical and radiographic assessment, exome sequencing, targeted gene resequencing, and determination of enzyme activity in cultured fibroblasts were performed.; The proband (age 40 years) had a history of episodic fever and pain in childhood that subsided around puberty. He and 2 of his older sisters (ages 58 and 60 years, respectively) showed adult-onset progressive shortening of fingers and toes with redundancy of the overlying skin. Radiographs showed severe osteolysis of the distal radius and ulna, carpal bones, metacarpal bones, and phalanges. Sequencing of the known genes for recessively inherited osteolysis, MMP2 and MMP14, failed to show pathogenic mutations. Exome sequencing revealed compound heterozygosity for mutations c.505T>C (p.Trp169Arg) and c.760A>G (p.Arg254Gly) in ASAH1, the gene coding for acid ceramidase. Sanger sequencing confirmed correct segregation in the family, and enzyme activity in fibroblast cultures from the patients was reduced to ∼8% of that in controls, confirming a diagnosis of Farber's disease.; Our findings indicate that hypomorphic mutations in ASAH1 may result in an osteoarticular phenotype with a juvenile phase resembling rheumatoid arthritis that evolves to osteolysis as the final stage in the absence of neurologic signs. This observation delineates a novel type of recessively inherited peripheral osteolysis and illustrates the long-term skeletal manifestations of acid ceramidase deficiency (Farber's disease) in what appear to be the oldest affected individuals known so far

    NANS-mediated synthesis of sialic acid is required for brain and skeletal development

    Full text link
    We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition

    Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator

    No full text
    Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks; 1; , but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease
    corecore