808 research outputs found
Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for H\"olderian almost complex structures
If is an almost complex manifold, with an almost complex structure of
class \CC^\alpha, for some , for every point and every
tangent vector at , there exists a germ of -holomorphic disc through
with this prescribed tangent vector. This existence result goes back to
Nijenhuis-Woolf. All the holomorphic curves are of class \CC^{1,\alpha}
in this case.
Then, exactly as for complex manifolds one can define the Royden-Kobayashi
pseudo-norm of tangent vectors. The question arises whether this pseudo-norm is
an upper semi-continuous function on the tangent bundle. For complex manifolds
it is the crucial point in Royden's proof of the equivalence of the two
standard definitions of the Kobayashi pseudo-metric. The upper semi-continuity
of the Royden-Kobayashi pseudo-norm has been established by Kruglikov for
structures that are smooth enough. In [I-R], it is shown that \CC^{1,\alpha}
regularity of is enough.
Here we show the following:
Theorem. There exists an almost complex structure of class \CC^{1\over
2} on the unit bidisc \D^2\subset \C^2, such that the Royden-Kobayashi
seudo-norm is not an upper semi-continuous function on the tangent bundle.Comment: 5 page
Some homogenization and corrector results for nonlinear monotone operators
This paper deals with the limit behaviour of the solutions of quasi-linear
equations of the form \ \ds -\limfunc{div}\left(a\left(x, x/{\varepsilon
_h},Du_h\right)\right)=f_h on with Dirichlet boundary conditions.
The sequence tends to and the map is
periodic in , monotone in and satisfies suitable continuity
conditions. It is proved that weakly in , where is the solution of a homogenized problem \
-\limfunc{div}(b(x,Du))=f on . We also prove some corrector results,
i.e. we find such that in
Correctors for some nonlinear monotone operators
In this paper we study homogenization of quasi-linear partial differential
equations of the form -\mbox{div}\left( a\left( x,x/\varepsilon _h,Du_h\right)
\right) =f_h on with Dirichlet boundary conditions. Here the
sequence tends to as
and the map is periodic in monotone in
and satisfies suitable continuity conditions. We prove that
weakly in as where
is the solution of a homogenized problem of the form -\mbox{div}\left(
b\left( x,Du\right) \right) =f on We also derive an explicit
expression for the homogenized operator and prove some corrector results,
i.e. we find such that in
New Classes of Potentials for which the Radial Schrodinger Equation can be solved at Zero Energy
Given two spherically symmetric and short range potentials and V_1 for
which the radial Schrodinger equation can be solved explicitely at zero energy,
we show how to construct a new potential for which the radial equation can
again be solved explicitely at zero energy. The new potential and its
corresponding wave function are given explicitely in terms of V_0 and V_1, and
their corresponding wave functions \phi_0 and \phi_1. V_0 must be such that it
sustains no bound states (either repulsive, or attractive but weak). However,
V_1 can sustain any (finite) number of bound states. The new potential V has
the same number of bound states, by construction, but the corresponding
(negative) energies are, of course, different. Once this is achieved, one can
start then from V_0 and V, and construct a new potential \bar{V} for which the
radial equation is again solvable explicitely. And the process can be repeated
indefinitely. We exhibit first the construction, and the proof of its validity,
for regular short range potentials, i.e. those for which rV_0(r) and rV_1(r)
are L^1 at the origin. It is then seen that the construction extends
automatically to potentials which are singular at r= 0. It can also be extended
to V_0 long range (Coulomb, etc.). We give finally several explicit examples.Comment: 26 pages, 3 figure
The Absence of Positive Energy Bound States for a Class of Nonlocal Potentials
We generalize in this paper a theorem of Titchmarsh for the positivity of
Fourier sine integrals. We apply then the theorem to derive simple conditions
for the absence of positive energy bound states (bound states embedded in the
continuum) for the radial Schr\"odinger equation with nonlocal potentials which
are superposition of a local potential and separable potentials.Comment: 23 page
The spectrum of the random environment and localization of noise
We consider random walk on a mildly random environment on finite transitive
d- regular graphs of increasing girth. After scaling and centering, the
analytic spectrum of the transition matrix converges in distribution to a
Gaussian noise. An interesting phenomenon occurs at d = 2: as the limit graph
changes from a regular tree to the integers, the noise becomes localized.Comment: 18 pages, 1 figur
Report of the panel on plate motion and deformation, section 2
Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain
Towards Physical Hybrid Systems
Some hybrid systems models are unsafe for mathematically correct but
physically unrealistic reasons. For example, mathematical models can classify a
system as being unsafe on a set that is too small to have physical importance.
In particular, differences in measure zero sets in models of cyber-physical
systems (CPS) have significant mathematical impact on the mathematical safety
of these models even though differences on measure zero sets have no tangible
physical effect in a real system. We develop the concept of "physical hybrid
systems" (PHS) to help reunite mathematical models with physical reality. We
modify a hybrid systems logic (differential temporal dynamic logic) by adding a
first-class operator to elide distinctions on measure zero sets of time within
CPS models. This approach facilitates modeling since it admits the verification
of a wider class of models, including some physically realistic models that
would otherwise be classified as mathematically unsafe. We also develop a proof
calculus to help with the verification of PHS.Comment: CADE 201
Groupoid normalizers of tensor products
We consider an inclusion B [subset of or equal to] M of finite von Neumann algebras satisfying B′∩M [subset of or equal to] B. A partial isometry vset membership, variantM is called a groupoid normalizer if vBv*,v*Bv[subset of or equal to] B. Given two such inclusions B<sub>i</sub> [subset of or equal to] M<sub>i</sub>, i=1,2, we find approximations to the groupoid normalizers of [formula] in [formula], from which we deduce that the von Neumann algebra generated by the groupoid normalizers of the tensor product is equal to the tensor product of the von Neumann algebras generated by the groupoid normalizers. Examples are given to show that this can fail without the hypothesis [formula], i=1,2. We also prove a parallel result where the groupoid normalizers are replaced by the intertwiners, those partial isometries vset membership, variantM satisfying vBv*[subset of or equal to] B and v*v,vv*[set membership, variant] B
On Convergence Properties of Shannon Entropy
Convergence properties of Shannon Entropy are studied. In the differential
setting, it is shown that weak convergence of probability measures, or
convergence in distribution, is not enough for convergence of the associated
differential entropies. A general result for the desired differential entropy
convergence is provided, taking into account both compactly and uncompactly
supported densities. Convergence of differential entropy is also characterized
in terms of the Kullback-Liebler discriminant for densities with fairly general
supports, and it is shown that convergence in variation of probability measures
guarantees such convergence under an appropriate boundedness condition on the
densities involved. Results for the discrete setting are also provided,
allowing for infinitely supported probability measures, by taking advantage of
the equivalence between weak convergence and convergence in variation in this
setting.Comment: Submitted to IEEE Transactions on Information Theor
- …