24 research outputs found

    Characterization of Aerosol

    Get PDF
    This report will give a review of the result of an experiment which is done to observe the distribution nature of particles when a pulse of Aerosol is injected onto a glass slide through a nozzle (The flow of Aerosol jet is a supersonic flow).3D graphical representation of distribution curve is plotted which is expected to be Gaussian in nature and a brief discussion about it is given. A description of cluster, how it can be ionized by a laser source and an introduction to ‘Time of flight’ is also given as it is a very important study for many spectroscopic experiment

    Dual targeting of mTOR/IL-17A and autophagy by fisetin alleviates psoriasis-like skin inflammation

    Get PDF
    Psoriasis is a chronic autoimmune inflammatory skin disorder characterized by epidermal hyperplasia and aberrant immune response. In addition to aberrant cytokine production, psoriasis is associated with activation of the Akt/mTOR pathway. mTOR/S6K1 regulates T-lymphocyte activation and migration, keratinocytes proliferation and is upregulated in psoriatic lesions. Several drugs that target Th1/Th17 cytokines or their receptors have been approved for treating psoriasis in humans with variable results necessitating improved therapies. Fisetin, a natural dietary polyphenol with anti-oxidant and anti-proliferative properties, covalently binds mTOR/S6K1. The effects of fisetin on psoriasis and its underlying mechanisms have not been clearly defined. Here, we evaluated the immunomodulatory effects of fisetin on Th1/Th17-cytokine-activated adult human epidermal keratinocytes (HEKa) and anti-CD3/CD28-stimulated inflammatory CD4+ T cells and compared these activities with those of rapamycin (an mTOR inhibitor). Transcriptomic analysis of HEKa revealed 12,713 differentially expressed genes (DEGs) in the fisetin-treated group compared to 7,374 DEGs in the rapamycin-treated group, both individually compared to a cytokine treated group. Gene ontology analysis revealed enriched functional groups related to PI3K/Akt/mTOR signaling pathways, psoriasis, and epidermal development. Using in silico molecular modeling, we observed a high binding affinity of fisetin to IL-17A. In vitro, fisetin significantly inhibited mTOR activity, increased the expression of autophagy markers LC3A/B and Atg5 in HEKa cells and suppressed the secretion of IL-17A by activated CD4+ T lymphocytes or T lymphocytes co-cultured with HEKa. Topical administration of fisetin in an imiquimod (IMQ)-induced mouse psoriasis model exhibited a better effect than rapamycin in reducing psoriasis-like inflammation and Akt/mTOR phosphorylation and promoting keratinocyte differentiation and autophagy in mice skin lesions. Fisetin also significantly inhibited T-lymphocytes and F4/80+ macrophage infiltration into skin. We conclude that fisetin potently inhibits IL-17A and the Akt/mTOR pathway and promotes keratinocyte differentiation and autophagy to alleviate IMQ-induced psoriasis-like disease in mice. Altogether, our findings suggest fisetin as a potential treatment for psoriasis and possibly other inflammatory skin diseases

    Engineering A Titanium And Polycaprolactone Construct For A Biocompatible Interface Between The Body And Artificial Limb

    No full text
    Intraosseous transcutaneous amputation prostheses may be able to overcome the problems that stem from the nonuniform distribution of pressure seen in the conventional stump-socket prosthetic replacement devices. Transcutaneous devices have had limited success in amputees. By optimizing the attachment of the skin to the prosthetic, intraosseous transcutaneous amputation prostheses may become clinically viable options. This report details studies evaluating the development of a modified titanium construct with a specially machined surface to increase the adherence of tissue as well as scaffold. A computer-aided biology tool was used to fabricate polycaprolactone (PCL) scaffolds with a specific three-dimensional architecture. To extrude the PCL, it was dissolved in acetic acid to produce a 70% PCL liquid. A scaffold with a porosity of \u3e50% was fabricated to have a tensile strength similar to skin. The presence of a specially machined surface greatly increased the adhesion of the PCL scaffold to the titanium constructs. When the 70% PCL was properly neutralized by heating at 55°C and washing in 90% ethanol (EtOH), there was only a decrease (10%) in the viability of cells seeded onto the PCL constructs when compared with the cells in culture. The antibacterial properties of titanium dioxide anatase, silver nanoparticles, and chlorhexidine diacetate mixed in either type I collagen or hyaluronic acid (HA) were assessed. The addition of 1% (w/w) chlorhexidine diacetate in HA resulted in a 71% decrease in bacteria seen in nontreated HA. These results show promise in developing a novel engineered titanium and PCL construct that promotes effective adhesion between the titanium-skin interface. Copyright 2010, Mary Ann Liebert, Inc

    Retinal vessel diameters in intermediate age-related macular degeneration using <i>en face</i> optical coherence tomography

    No full text
    Clinical assessment of age-related macular degeneration (AMD) relies on biomarkers that do not necessarily reflect the contributions of vascular dysfunction. Validation of clinically accessible methods of measuring retinal vascular integrity could provide a more holistic understanding of AMD-related changes to facilitate appropriate care. There is conflicting evidence if retinal vessel calibre is significantly altered in the early stages of AMD. This study examined the outer and inner diameters of first order retinal vessels in intermediate AMD eyes using en face optical coherence tomography (OCT). Retinal en face (6 × 6 mm) OCT images were examined in a single eye of participants with intermediate AMD (n = 46) versus normal macula (n = 43) for arterioles (all identifiable) and venules (40/46 and 39/43 identifiable). All participants were aged ≥50 years without diabetes mellitus, hypertension, or other systemic vascular disease. Intra- and inter-grader agreement was good-to-excellent for all en face OCT measurements of arteriole and venule diameters (intraclass correlation coefficient = 0.87 to 0.99). Arteriolar outer diameters (82.3 ± 19.8 µm vs 73.8 ± 16.1 µm; p p p p = 0.17) in AMD eyes compared to normal eyes. Arteriolar dilation and altered venular inner diameter were observed in intermediate AMD eyes. These results support further investigation of vascular contributions to AMD in the early stages of disease, possibly using the en face OCT imaging modality.</p

    Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy

    No full text
    The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors

    A smart medicine reminder kit with mobile phone calls and some health monitoring features for senior citizens

    No full text
    The demand for an effective system that combines cutting-edge technologies with medical research to improve healthcare systems has increased with the development of medical technology. The most fundamental form of disease prevention is taking the right medication when needed. With the right care, many fatal diseases can be cured or prevented. Therefore, it is crucial to follow the doctor's recommended drug plan. Healthcare experts now have serious concerns about patients not being able to take their prescribed medications on time, particularly elderly patients. Due to age-related memory loss, people who have been given multiple prescriptions at once over an extended period of time are more likely to forget to take their medication on time or to take the wrong medication. Sometimes, a patient's inability to take the right medication at the right time might have a major impact on their health. Aside from being forgetful, patients, especially the elderly and illiterate, may not be able to read the name stated on medical containers, leading to the consumption of the wrong medication. These errors contribute to non-adherence to pharmaceuticals, which is detrimental to the patient's health. As a result, there is a significant problem that hinders the success of the treatment. The medication reminder system is intended for people who frequently take medications or vitamin supplements in order to handle this. In order to help an elderly person properly take their medication and help the patient have a healthy life, we have created a ground-breaking portable multifunctional medicine reminder kit with phone calls. Other intelligent characteristics of the smart medicine reminder include the capacity to show the time, date, and day in real time, the detection of smoke, the measurement of air humidity and temperature in the room, the measurement of heartbeats per second, the patient's body temperature, and the oxygen saturation level

    Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers

    No full text
    Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC values ranging from 0.12 to \u3c 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs

    Identification of new fisetin analogs as kinase inhibitors: Data on synthesis and anti-skin cancer activities evaluation

    No full text
    This article contains supplemental datasets of the recently published related research article by Roy et al., [1]. It provides in-depth data not included in the original co-submission on the biophysical, molecular docking, and biological characterization of newly synthesized flavonol-based analogs of fisetin, a natural dietary small molecule with anticancer and anti-inflammatory properties. These synthetic small molecules were investigated as new, potential single and/or multi-kinase inhibitors of the cyclin-dependent kinase-2 (CDK2), receptor tyrosine kinases (c-KITs), and mammalian targets of rapamycin (mTOR) targets, potentially active against melanoma or non-melanoma skin cancers. Furthermore, this data-in-brief article comprises additional sets of results on several aspects of the properties of the dual and multiple kinase inhibitor compounds\u27 effects that were not presented in the associated article, including the activated targets that are dysregulated in skin cancers; the effects on markers of apoptosis; on colony formation; and in scratch wound healing assays. The study has identified a panel of novel fisetin analogs that are either single- or multi-kinase inhibitors, which may be further developed as active for the treatment of melanoma and non-melanoma skin cancers. The dataset presented herein will be utilized for additional studies aiming to establish a biological platform to steer for predictive and experimental screening of novel flavonoids and analogs in relevant organoids, humanized animal models and disease models. The present results should also serve as a key stepping-stone towards enabling target-structure-based design, synthesis and initial testing of novel analogs or derivatives of fisetin. The current study may eventually lead to the development of safe, promising and preclinical candidate entities for treatment of skin and other forms of cancers as well as various other human diseases, which can possibly add to the general armamentarium of promising and safe drugs for health promotion

    The designed synthesis, recognition, and possible applications of Zn(III) complex

    No full text
    The structural pressure-induced ionization process is implemented to produce Zn(III) complex for the first time and possible potential applications for technological advances are reported in this article. The inversion of the electron population observed at the ground state of the newly synthesized complex corroborates an unexplored material response property towards electrical and magnetic fields. The first-time report of a true transition metal behavior of zinc fetches new thoughts about zinc-based bio-enzymatic and bio-catalytic processes along with its material applications in untouched files like live cell imaging contrast agents, photocatalytic water splitting, etc. The methodology of the ‘ structural pressure-induced ionization process’ may be implemented for the synthesis of more unusual oxidation states of metals
    corecore