8 research outputs found

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    The Intersection of Epstein-Barr Virus with the Germinal Center▿ †

    No full text
    The current model of Epstein-Barr virus (EBV) infection and persistence in vivo proposes that EBV uses the germinal center (the GC model) to establish a quiescent latent infection in otherwise-normal memory B cells. However, the evidence linking EBV-infected cells and the GC is only indirect and limited. Therefore, a key portion of the model, that EBV-infected cells physically reside and participate in GCs, has yet to be verified. Furthermore, recent experiments suggested that upon infection of GC cells the viral growth latency transcription program is dominant and GC functionality and phenotype are ablated, i.e., EBV infection is not consistent with GC function. In this study we show that in vivo, EBV-infected B cells in the tonsils retain expression of functional and phenotypic markers of GC cells, including bcl-6 and AID. Furthermore, these cells are physically located in the GC and express a restricted form of latency, the default latency program. Thus, the EBV default latency transcription program, unlike the growth latency program, is consistent with the retention of GC functionality in vivo. This work verifies key components of the GC model of EBV persistence and suggests that EBV and the GC can interact to produce the latently infected memory cells found in the periphery. Furthermore, it identifies latently infected GC B cells as a potential pathogenic nexus for the development of the EBV-positive, GC-associated lymphomas Hodgkin's disease and Burkitt's lymphoma

    Germinal Center B Cells Latently Infected with Epstein-Barr Virus Proliferate Extensively but Do Not Increase in Numberâ–¿

    No full text
    In this study we show that in long-term persistent infection, Epstein-Barr virus (EBV)-infected cells undergoing a germinal center (GC) reaction in the tonsils are limited to the follicles and proliferate extensively. Despite this, the absolute number of infected cells per GC remains small (average of 3 to 4 cells per germinal center; range, 1 to 9 cells), and only about 38 to 55% (average, 45%) of all GCs carry infected cells. The data fit a model where, on average, cells in the GC divide approximately three times; however, only one progeny cell survives to undergo a further three divisions. Thus, a fraction of cells undergo multiple rounds of division without increasing in numbers; i.e., they die at the same rate that they are dividing. We conclude that EBV-infected cells in the GC undergo the extensive proliferation characteristic of GC cells but that the absolute number is limited either by the immune response or by the availability of an essential survival factor. We suggest that this behavior is a relic of the mechanism by which EBV establishes persistence during acute infection. Lastly, the expression of the viral latent protein LMP1 in GC B cells, unlike in vitro, does not correlate directly with the expression of bcl-2 or bcl-6. This emphasizes our claim that observations made regarding the functions of EBV proteins in cell lines or in transgenic mice should be treated with skepticism unless verified in vivo

    Epstein–Barr virus infection is not a characteristic feature of multiple sclerosis brain

    No full text
    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) that is thought to be caused by a combination of genetic and environmental factors. To date, considerable evidence has associated Epstein–Barr virus (EBV) infection with disease development. However, it remains controversial whether EBV infects multiple sclerosis brain and contributes directly to CNS immunopathology. To assess whether EBV infection is a characteristic feature of multiple sclerosis brain, a large cohort of multiple sclerosis specimens containing white matter lesions (nine adult and three paediatric cases) with a heterogeneous B cell infiltrate and a second cohort of multiple sclerosis specimens (12 cases) that included B cell infiltration within the meninges and parenchymal B cell aggregates, were examined for EBV infection using multiple methodologies including in situ hybridization, immunohistochemistry and two independent real-time polymerase chain reaction (PCR) methodologies that detect genomic EBV or the abundant EBV encoded RNA (EBER) 1, respectively. We report that EBV could not be detected in any of the multiple sclerosis specimens containing white matter lesions by any of the methods employed, yet EBV was readily detectable in multiple Epstein–Barr virus-positive control tissues including several CNS lymphomas. Furthermore, EBV was not detected in our second cohort of multiple sclerosis specimens by in situ hybridization. However, our real-time PCR methodologies, which were capable of detecting very few EBV infected cells, detected EBV at low levels in only 2 of the 12 multiple sclerosis meningeal specimens examined. Our finding that CNS EBV infection was rare in multiple sclerosis brain indicates that EBV infection is unlikely to contribute directly to multiple sclerosis brain pathology in the vast majority of cases

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. Findings In 2016, there were 27.08 million (95% uncertainty interval [UI] 24.30-30.30 million) new cases of TBI and 0.93 million (0.78-1.16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55.50 million (53.40-57.62 million) and of SCI was 27.04 million (24 .98-30 .15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8.4% (95% UI 7.7 to 9.2), whereas that of SCI did not change significantly (-0.2% [-2.1 to 2.7]). Age-standardised incidence rates increased by 3.6% (1.8 to 5.5) for TBI, but did not change significantly for SCI (-3.6% [-7.4 to 4.0]). TBI caused 8.1 million (95% UI 6. 0-10. 4 million) YLDs and SCI caused 9.5 million (6.7-12.4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases:subgroup analyses of the RESTART randomised, open-label trial

    No full text
    Background: Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy. Methods: RESTART was a prospective, randomised, open-label, blinded-endpoint, parallel-group trial at 122 hospitals in the UK that assessed whether starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. For this prespecified subgroup analysis, consultant neuroradiologists masked to treatment allocation reviewed brain CT or MRI scans performed before randomisation to confirm participant eligibility and rate features of the intracerebral haemorrhage and surrounding brain. We followed participants for primary (recurrent symptomatic intracerebral haemorrhage) and secondary (ischaemic stroke) outcomes for up to 5 years (reported elsewhere). For this report, we analysed eligible participants with intracerebral haemorrhage according to their treatment allocation in primary subgroup analyses of cerebral microbleeds on MRI and in exploratory subgroup analyses of other features on CT or MRI. The trial is registered with the ISRCTN registry, number ISRCTN71907627. Findings: Between May 22, 2013, and May 31, 2018, 537 participants were enrolled, of whom 525 (98%) had intracerebral haemorrhage: 507 (97%) were diagnosed on CT (252 assigned to start antiplatelet therapy and 255 assigned to avoid antiplatelet therapy, of whom one withdrew and was not analysed) and 254 (48%) underwent the required brain MRI protocol (122 in the start antiplatelet therapy group and 132 in the avoid antiplatelet therapy group). There were no clinically or statistically significant hazards of antiplatelet therapy on recurrent intracerebral haemorrhage in primary subgroup analyses of cerebral microbleed presence (2 or more) versus absence (0 or 1) (adjusted hazard ratio [HR] 0·30 [95% CI 0·08–1·13] vs 0·77 [0·13–4·61]; pinteraction=0·41), cerebral microbleed number 0–1 versus 2–4 versus 5 or more (HR 0·77 [0·13–4·62] vs 0·32 [0·03–3·66] vs 0·33 [0·07–1·60]; pinteraction=0·75), or cerebral microbleed strictly lobar versus other location (HR 0·52 [0·004–6·79] vs 0·37 [0·09–1·28]; pinteraction=0·85). There was no evidence of heterogeneity in the effects of antiplatelet therapy in any exploratory subgroup analyses (all pinteraction>0·05). Interpretation: Our findings exclude all but a very modest harmful effect of antiplatelet therapy on recurrent intracerebral haemorrhage in the presence of cerebral microbleeds. Further randomised trials are needed to replicate these findings and investigate them with greater precision. Funding: British Heart Foundation

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases : subgroup analyses of the RESTART randomised, open-label trial

    No full text
    Background: Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy. Methods: RESTART was a prospective, randomised, open-label, blinded-endpoint, parallel-group trial at 122 hospitals in the UK that assessed whether starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. For this prespecified subgroup analysis, consultant neuroradiologists masked to treatment allocation reviewed brain CT or MRI scans performed before randomisation to confirm participant eligibility and rate features of the intracerebral haemorrhage and surrounding brain. We followed participants for primary (recurrent symptomatic intracerebral haemorrhage) and secondary (ischaemic stroke) outcomes for up to 5 years (reported elsewhere). For this report, we analysed eligible participants with intracerebral haemorrhage according to their treatment allocation in primary subgroup analyses of cerebral microbleeds on MRI and in exploratory subgroup analyses of other features on CT or MRI. The trial is registered with the ISRCTN registry, number ISRCTN71907627. Findings: Between May 22, 2013, and May 31, 2018, 537 participants were enrolled, of whom 525 (98%) had intracerebral haemorrhage: 507 (97%) were diagnosed on CT (252 assigned to start antiplatelet therapy and 255 assigned to avoid antiplatelet therapy, of whom one withdrew and was not analysed) and 254 (48%) underwent the required brain MRI protocol (122 in the start antiplatelet therapy group and 132 in the avoid antiplatelet therapy group). There were no clinically or statistically significant hazards of antiplatelet therapy on recurrent intracerebral haemorrhage in primary subgroup analyses of cerebral microbleed presence (2 or more) versus absence (0 or 1) (adjusted hazard ratio [HR] 0·30 [95% CI 0·08–1·13] vs 0·77 [0·13–4·61]; pinteraction=0·41), cerebral microbleed number 0–1 versus 2–4 versus 5 or more (HR 0·77 [0·13–4·62] vs 0·32 [0·03–3·66] vs 0·33 [0·07–1·60]; pinteraction=0·75), or cerebral microbleed strictly lobar versus other location (HR 0·52 [0·004–6·79] vs 0·37 [0·09–1·28]; pinteraction=0·85). There was no evidence of heterogeneity in the effects of antiplatelet therapy in any exploratory subgroup analyses (all pinteraction>0·05). Interpretation: Our findings exclude all but a very modest harmful effect of antiplatelet therapy on recurrent intracerebral haemorrhage in the presence of cerebral microbleeds. Further randomised trials are needed to replicate these findings and investigate them with greater precision. Funding: British Heart Foundation
    corecore