22 research outputs found

    Contribution au développement du CBED et de l'holographie HREM pour l'analyse des déformations de couches épitaxiées

    No full text
    Les couches minces Ă©pitaxiĂ©es sur substrat subissent une dĂ©formation Ă©lastique, liĂ©e Ă  la diffĂ©rence de paramĂȘtres cristallins, accompagnĂ©e ou pas de sĂ©grĂ©gation chimique. Ces diffĂ©rents effets influent directement sur les propriĂ©tĂ©s des couches minces Ă©pitaxiĂ©es (caractĂ©ristiques d'Ă©mission dans les puits quantiques, transport et anisotropie magnĂ©tique ...). Ils sont au cƓur d'une recherche tant fondamentale qu'appliquĂ©e visant Ă  ajuster les propriĂ©tĂ©s par la maĂźtrise des Ă©tats de dĂ©formation des syste mes Ă©pitaxiĂ©s. Les techniques expĂ©rimentales susceptibles de dĂ©terminer les paramĂ©tres cristallins des couches Ă©pitaxiĂ©es fournissent pour la plupart des informations partielles car moyennĂ©es sur l'ensemble de la couche ou sur sa surface. La microscopie Ă©lectronique en transmission (MET) permet de sĂ©lectionner prĂ©cisĂ©ment les zones Ă©tudiĂ©es, ce qui est un avantage considĂ©rable en prĂ©sence d'hĂ©tĂ©rogĂ©nĂ©itĂ©s. En particulier des mesures d'une trĂšs grande prĂ©cision peuvent ainsi ĂȘtre obtenues par la diffraction Ă©lectronique en faisceau convergent (CBED). Le but de ce travail est d'optimiser les techniques de mesure des dĂ©formations de couches minces avec une rĂ©solution spatiale de l'ordre du nanomĂ©tre. Nous avons choisi d'Ă©tudier l'Ă©tat de dĂ©formation de couches minces Ă©pitaxiĂ©es dans les systĂ©mes SiGe=Si et GaInAs=GaAs. Les diagrammes CBED sur des sections transverses rĂ©vĂ©lent une trĂ©s forte dĂ©formation dans la couche et nous observons dans le substrat des modifications du profil des lignes de HOLZ en fonction de la distance de la zone diffractante Ă  l'interface couche/substrat. Nous interprĂ©tons cette Ă©volution comme caractĂ©ristique d'un phĂ©nomĂ©ne de relaxation de la contrainte Ă©pitaxiale de la couche du Ă  la faible Ă©paisseur de l'Ă©chantillon. Cet effet dĂ©pend de nombreux paramĂ©tres, tels que l'Ă©paisseur de l'Ă©chantillon, le misfit et la distance de la zone diffractante Ă  l'interface couche/substrat. Afin de remonter Ă  la dĂ©formation, nous avons dĂ©veloppĂ© une nouvelle mĂ©thode de mesure basĂ©e sur la combinaison de calculs par Ă©lĂ©ments finis et de simulations dynamiques obtenues grĂące Ă  un formalisme original dĂ©veloppĂ© au cours de ce travail appelĂ© formalisme TDDT (ThĂ©orie dynamique dĂ©pendante du temps). Les effets de relaxation Ă©lastique ont pu aussi ĂȘtre mis en Ă©vidence dans les Ă©chantillons prĂ©parĂ©s en vue plane. Leur Ă©tat de dĂ©formation a pu ĂȘtre dĂ©terminĂ© Ă  partir du CBED, et les simulations TDDT rendent bien compte de tous les contrastes observĂ©s. Ces diffĂ©rentes mesures de dĂ©formation ont Ă©tĂ© comparĂ©es Ă  des Ă©tudes rĂ©alisĂ©es par holographie Ă©lectronique en configuration HREM permettant de combiner les caractĂ©risations structurales (dĂ©formations) et chimique Ă  l'Ă©chelle atomique. Ce travail a grandement bĂ©nĂ©ficiĂ© de l'utilisation d'un microscope TEM-FEG dotĂ© d'un correcteur d'aberration sphĂ©rique et d'un filtre en Ă©nergieEpitaxial thin layers undergo an elastic strain, related to the difference in lattice parameters, accompanied or not by chemical segregation. These various effects influence directly the properties of the epitaxial thin layers (emission in quantum wells, transport and magnetic anisotropy...). They interest both fundamental research and applications aiming at adjusting the properties of epitaxial layers through the control of their state of strain. Most of the experimental techniques used to determine the lattice parameters in epitaxial layers only provide information averaged over the whole layer or its surface. On the contrary, Transmission electron microscopy (TEM) makes it possible to precisely select the studied zones, which is a considerable advantage in the presence of heterogeneities. In particular very accurate measurements can be obtained by convergent beam electron diffraction (CBED). This work aims at developing reliable methods to measure the strain in thin layers with a spatial resolution of the order of a nanometer. The selected systems for this study were SiGe=Si and GaInAs=GaAs epitaxial thin layers. CBED patterns obtained on cross-sectional specimens reveal a very heavy deformation in the layer and we observe, in the substrate, a strong evolution of the HOLZ line profile as a function of the distance between the studied zone and the interface. We showed that this evolution results from a free surface relaxation effect occurring in thin foils of strained specimens. This effect depends on many parameters, such as the thickness of the sample, the misfit and the distance between the studied zone and the interface. In order to retrieve the strain in the specimen, we developed a new method based on the combination of finite elements calculations and dynamical simulations obtained using an original formalism developed during this work and referred as TDDT (Time-Dependent Dynamical Theory). Elastic relaxation could also be observed in samples prepared in plan-view. The state of strain was thus determined in the various specimens through the comparison of simulated and experimental line profiles : remarkable agreements have been reached. These various measurements were compared with studies carried out by electron holography in HREM configuration making it possible to combine structural and chemical characterizations at an atomic scale. This works benefited from the use of a TEM-FEG instrument fitted with both a spherical aberration corrector and an energy filterTOULOUSE-INSA (315552106) / SudocSudocFranceF

    Some TEM investigations on composites, alloys-superalloys and superconductive ceramics

    No full text
    Composites ‱ HREM study, chemical analysis by EELS and fine structure by EXELFS have been realized on SiC polytypes existing in SiC-SiC composites. Alloys-Superalloys ‱ TEM in situ straining experiments performed on Be, Ni3Al and superalloys are reported. Superconductive ceramics ‱ HVEM (3 MeV) equipped with a gas microchamber has allowed the direct observation of the tetragonal ↔ orthorhombic transition of the superconductive phases (Ln)Ba2Cu3O6+x(0≀ x ≀ 1) (Ln "cocktail" of rare earth Y, Nd, Sm, Eu, Yb). Influence of the rare earth substitution for Ca in Bi-Sr-Ca-Cu-O, which affects Tc, is also reported.Composites ‱ L'Ă©tude des polytypes SiC par HREM, les analyses chimiques par EELS et les structures fines par EXELFS ont Ă©tĂ© rĂ©alisĂ©es sur des composites SiC-SiC. Alliages-Superalliages ‱ Des expĂ©riences de dĂ©formation in situ dans un microscope Ă©lectronique Ă  transmission sur Be, Ni3Al et des superalliages sont rapportĂ©es. CĂ©ramiques supraconductrices ‱ Le microscope Ă  haute tension (3 MeV) , Ă©quipĂ© d'une microchambre, a permis l'observation directe de la transformation quadratique ↔ orthorhombique des phases supraconductrices (Ln)Ba2Cu3O6+x (0 ≀ x ≀ 1) (Ln "cocktail" de terres rares Y, Nd, Sm, Eu, Yb). L'influence de la substitution de terres rares au calcium dans les phases Bi-Sr-Ca-Cu-O, qui affecte Tc, a Ă©tĂ© suivie au niveau structural par des investigations combinĂ©es aux rayons X et en microscopie Ă©lectronique

    Effect of sample bending on diffracted intensities observed in CBED patterns of plan view strained samples

    No full text
    International audienceConvergent beam electron diffraction is used to study the effect of the sample bending on diffracted intensities as observed in transmission electron microscopy (TEM). Studied samples are made of thin strained semiconductor Ga1−xInxAs epitaxial layers grown on a GaAs substrate and observed in plan view. Strong variations of the diffracted intensities are observed depending on the thinning process used for TEM foil preparation. For chemically thinned samples, strong bending of the substrate occurs, inducing modifications of both kinematical and dynamical Bragg lines. For mechanically thinned samples, bending of the substrate is negligible. Kinematical lines are unaffected whereas dynamical lines have slightly asymmetric intensities. We analyse these effects using finite element modelling to calculate the sample strain coupled with dynamical multibeam simulations for calculating the diffracted intensities. Our results correctly reproduce the qualitative features of experimental patterns, clearly demonstrating that inhomogeneous displacement fields along the electron beam within the substrate are responsible for the observed intensity modifications

    Strain analysis in transmission electron microscopy: how far can we go?

    No full text
    International audienc

    Strain analysis in transmission electron microscopy: how far can we go?

    No full text
    International audienc

    Quantitative analysis of HOLZ line splitting in CBED patterns of epitaxially strained layers

    No full text
    International audienceA SiGe layer epitaxially grown on a silicon substrate is experimentally studied by convergent beam electron diffraction (CBED) experiments and used as a test sample to analyse the higher-order Laue zones (HOLZ) line splitting. The influence of surface strain relaxation on the broadening of HOLZ lines is confirmed. The quantitative fit of the observed HOLZ line profiles is successfully achieved using a formalism particularly well-adapted to the case of a -dependent crystal potential ( being the zone axis). This formalism, based on a time-dependent perturbation theory approach, proves to be much more efficient than a classical Howie–Whelan approach, to reproduce the complex HOLZ lines profile in this heavily strained test sample
    corecore