6,002 research outputs found

    Clustering of exceptional points and dynamical phase transitions

    Full text link
    The eigenvalues of a non-Hermitian Hamilton operator are complex and provide not only the energies but also the lifetimes of the states of the system. They show a non-analytical behavior at singular (exceptional) points (EPs). The eigenfunctions are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. When the parameters are tuned to the point of maximum width bifurcation, the phase rigidity suddenly increases up to its maximum value. This means that the eigenfunctions become almost orthogonal at this point. This unexpected result is very robust as shown by numerical results for different classes of systems. Physically, it causes an irreversible stabilization of the system by creating local structures that can be described well by a Hermitian Hamilton operator. Interesting non-trivial features of open quantum systems appear in the parameter range in which a clustering of EPs causes a dynamical phase transition.Comment: A few improvements; 2 references added; 28 pages; 7 figure

    Suppression of Magnetic Order by Pressure in BaFe2As2

    Full text link
    We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2 under high pressure. The T-P phase diagram of BaFe2As2 determined from resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly is quite robust against P.Comment: 2 pages, 2 figure

    New PbSnTe heterojunction laser diode structures with improved performance

    Get PDF
    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved

    Evidence for Unconventional Superconductivity in Arsenic-Free Iron-Based Superconductor FeSe : A ^77Se-NMR Study

    Full text link
    We report the results of 77^{77}Se--nuclear magnetic resonance (NMR) in α\alpha-FeSe, which exhibits a similar crystal structure to the LaFeAsO1x_{1-x}Fx_x superconductor and shows superconductivity at 8 K. The nuclear-spin lattice relaxation rate 1/T11/T_1 shows T3T^3 behavior below the superconducting transition temperature TcT_c without a coherence peak. The T1T=T_1T= const. behavior, indicative of the Fermi liquid state, can be seen in a wide temperature range above TcT_c. The superconductivity in α\alpha-FeSe is also an unconventional one as well as LaFeAsO1x_{1-x}Fx_x and related materials. The FeAs layer is not essential for the occurrence of the unconventional superconductivity.Comment: 4pages, 4figures, to be published in J. Phys. Soc. Jpn. 77 No.11 (2008

    S-matrix theory for transmission through billiards in tight-binding approach

    Full text link
    In the tight-binding approximation we consider multi-channel transmission through a billiard coupled to leads. Following Dittes we derive the coupling matrix, the scattering matrix and the effective Hamiltonian, but take into account the energy restriction of the conductance band. The complex eigenvalues of the effective Hamiltonian define the poles of the scattering matrix. For some simple cases, we present exact values for the poles. We derive also the condition for the appearance of double poles.Comment: 29 pages, 9 figures, submitted to J. Phys. A: Math. and Ge

    Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in J. Phys. Soc. Jp

    Commensurate Itinerant Antiferromagnetism in BaFe2As2: 75As-NMR Studies on a Self-Flux Grown Single Crystal

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by simultaneous structural transition as evidenced by a sudden large change of the electric field gradient tensor at the As site. The NMR results lead almost uniquely to the stripe spin structure in the AF phase. The data of spin-lattice relaxation rate indicate development of anisotropic spin fluctuations of the stripe-type with decreasing temperature in the paramagnetic phase.Comment: 7 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements WkccW_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Pump-induced Exceptional Points in Lasers

    Full text link
    We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off even when the overall pump power deposited in the system is increased. Such signatures of a pump- induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.Comment: 4.5 pages, 4 figures, final version including additional FDTD dat
    corecore