2,630 research outputs found
Recommended from our members
Ecological determinants of Lyme borreliosis hazard in the South Downs National Park and the potential for One Health based interventions (work in progress)
No description supplie
Experimental study of a free and forced swirling jet
International audienceThe present study concerns the response of a swirling jet to various azimuthal modes and frequencies forced at the nozzle exit. The different unforced dynamical states are first described as a function of the swirl setting, determined from measured velocity fields in the longitudinal plane using particle image velocimetry. A second experimental technique, based on laser induced fluorescence, is described, which is more suited to the description of the low-amplitude response of the jet to the forcing. It is shown that the receptivity of the jet is very poor when the forcing is set to the naturally prevailing azimuthal mode (m = 2) and frequency. In contrast, a strong response is observed for both co-rotating and counter-rotating forced azimuthal modes (m = ±2, m = ±3) for frequencies about one order of magnitude larger than the frequency prevailing in the absence of forcing. Finally, the present actuator is seen to be ineffective in preventing the appearance of vortex breakdown itself. © 2004 American Institute of Physics
Inelastic quantum transport in superlattices: success and failure of the Boltzmann equation
Electrical transport in semiconductor superlattices is studied within a fully
self-consistent quantum transport model based on nonequilibrium Green
functions, including phonon and impurity scattering. We compute both the drift
velocity-field relation and the momentum distribution function covering the
whole field range from linear response to negative differential conductivity.
The quantum results are compared with the respective results obtained from a
Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the
limits of validity for the semiclassical theory in a nonlinear transport
situation in the presence of inelastic scattering.Comment: final version with minor changes, to appear in Physical Review
Letters, sceduled tentatively for July, 26 (1999
Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport
A non-equilibrium Green's function method is applied to model high-field
quantum transport and electron-phonon resonances in semiconductor
superlattices. The field-dependent density of states for elastic (impurity)
scattering is found non-perturbatively in an approach which can be applied to
both high and low electric fields. I-V curves, and specifically electron-phonon
resonances, are calculated by treating the inelastic (LO phonon) scattering
perturbatively. Calculations show how strong impurity scattering suppresses the
electron-phonon resonance peaks in I-V curves, and their detailed sensitivity
to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl
Hyper-velocity impact test and simulation of a double-wall shield concept for the Wide Field Monitor aboard LOFT
The space mission LOFT (Large Observatory For X-ray Timing) was selected in
2011 by ESA as one of the candidates for the M3 launch opportunity. LOFT is
equipped with two instruments, the Large Area Detector (LAD) and the Wide Field
Monitor (WFM), based on Silicon Drift Detectors (SDDs). In orbit, they would be
exposed to hyper-velocity impacts by environmental dust particles, which might
alter the surface properties of the SDDs. In order to assess the risk posed by
these events, we performed simulations in ESABASE2 and laboratory tests. Tests
on SDD prototypes aimed at verifying to what extent the structural damages
produced by impacts affect the SDD functionality have been performed at the Van
de Graaff dust accelerator at the Max Planck Institute for Nuclear Physics
(MPIK) in Heidelberg. For the WFM, where we expect a rate of risky impacts
notably higher than for the LAD, we designed, simulated and successfully tested
at the plasma accelerator at the Technical University in Munich (TUM) a
double-wall shielding configuration based on thin foils of Kapton and
Polypropylene. In this paper we summarize all the assessment, focussing on the
experimental test campaign at TUM.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
- …