476 research outputs found

    Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    Get PDF
    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model

    Oxidation Through Coating Cracks of SiC-Protected Carbon/Carbon

    Get PDF
    The oxidation of SiC-protected carbon/carbon through machined slots and naturally occurring craze cracks in the SiC was studied. The slot and crack geometries were characterized, and the subsurface oxidation of the carbon/carbon substrate at temperatures of 1000 to 1300 C in air was assessed using weight change, x-ray computed tomography, and optical microscopy of sections. Rate constants were derived from these measurements and compared with a two-step diffusion control model of carbon oxidation. Oxidation kinetic measurements on both the specimens with machined slots and with naturally occurring craze cracks showed good agreement with the model

    NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Get PDF
    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided

    Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    Get PDF
    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating

    Hepatitis E virus: Efficacy of pasteurization of plasma‐derived VWF/FVIII concentrate determined by pig bioassay

    Get PDF
    Background Hepatitis E virus (HEV) is the leading cause of acute hepatitis throughout the world. Increasing blood component transfusion-associated HEV infections highlight the need for reliable virus inactivation procedures for plasma derivatives from pooled plasma donations. Study Design and Methods An animal infection study was conducted to evaluate the efficiency of HEV inactivation by pasteurization during the manufacturing process of the von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate Haemate P/Humate-P (CSL Behring, Marburg, Germany). For this purpose, groups of pigs were inoculated with stabilized VWF/FVIII intermediate spiked with HEV-positive liver homogenate and exposed to increasing incubation times of 0, 3, 6, and 10 h at 60 degrees C. Animals were evaluated for virus replication over 27 days and in a subsequent trial over 92 days. Results Virus replication was detected in animals up to the 6-h pasteurization group. In contrast, pasteurization for 10 h did not reveal virus detection when the observation period was 27 days. In an additional experiment using the 10-h pasteurized material, two individuals started virus excretion and seroconverted when the observation period was extended to 92 days. Based on the total infection rate (2 of 12) of the animals inoculated with the sample pasteurized for 10 h, a virus reduction factor of at least 4.7 log(10) is calculated. Conclusion This study demonstrates that pasteurization at 60 degrees C for 10 h of an HEV-positive plasma derivative leads to the effective reduction of infectivity, resulting in a VWF/FVIII product with an appropriate margin of safety for HEV

    Leveraging the ALMA Atacama Compact Array for Cometary Science: An Interferometric Survey of Comet C/2015 ER61 (PanSTARRS) and Evidence for a Distributed Source of Carbon Monosulfide

    Full text link
    We report the first survey of molecular emission from cometary volatiles using standalone Atacama Compact Array (ACA) observations of the Atacama Large Millimeter/Submillimeter Array (ALMA) toward comet C/2015 ER61 (PanSTARRS) carried out on UT 2017 April 11 and 15, shortly after its April 4 outburst. These measurements of HCN, CS, CH3_3OH, H2_2CO, and HNC (along with continuum emission from dust) probed the inner coma of C/2015 ER61, revealing asymmetric outgassing and discerning parent from daughter/distributed source species. This work presents spectrally integrated flux maps, autocorrelation spectra, production rates, and parent scale lengths for each molecule, and a stringent upper limit for CO. HCN is consistent with direct nucleus release in C/2015 ER61, whereas CS, H2_2CO, HNC, and potentially CH3_3OH are associated with distributed sources in the coma. Adopting a Haser model, parent scale lengths determined for H2_2CO (Lp_p \sim 2200 km) and HNC (Lp_p \sim 3300 km) are consistent with previous work in comets, whereas significant extended source production (Lp_p \sim 2000 km) is indicated for CS, suggesting production from an unknown parent in the coma. The continuum presents a point-source distribution, with a flux density implying an excessively large nucleus, inconsistent with other estimates of the nucleus size. It is best explained by the thermal emission of slowly-moving outburst ejectas, with total mass 5--8 ×\times 1010^{10} kg. These results demonstrate the power of the ACA for revealing the abundances, spatial distributions, and locations of molecular production for volatiles in moderately bright comets such as C/2015 ER61

    Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: relationships with post-operative complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma concentrations of sFlt-1, the soluble form of the vascular endothelial growth factor receptor (VEGF), markedly increase during coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC). We investigated if plasma sFlt-1 values might be related to the occurrence of surgical complications after CABG.</p> <p>Methods</p> <p>Plasma samples were collected from the radial artery catheter before vascular cannulation and after opening the chest, at the end of ECC just before clamp release, after cross release, after weaning from ECC, at the 6<sup>th </sup>and 24<sup>th </sup>post-operative hour. Thirty one patients were investigated. The presence of cardiovascular, haematological and respiratory dysfunctions was prospectively assessed. Plasma sFlt-1 levels were measured with commercially ELISA kits.</p> <p>Results</p> <p>Among the 31 investigated patients, 15 had uneventful surgery. Patients with and without complications had similar pre-operative plasma sFlt-1 levels. Lowered plasma sFlt-1 levels were observed at the end of ECC in patients with haematological (p = 0.001, ANOVA) or cardiovascular (p = 0.006) impairments, but not with respiratory ones (p = 0.053), as compared to patients with uneventful surgery.</p> <p>Conclusion</p> <p>These results identify an association between specific post-CABG complication and the lower release of sFlt-1 during ECC. sFlt-1-induced VEGF neutralisation might, thus, be beneficial to reduce the development of post-operative adverse effects after CABG.</p

    Mechanistic insight into proton-coupled mixed valency

    Get PDF
    Stabilisation of the mixed-valence state in [Mo2(TiPB)3(HDOP)]2+ (HTiPB = 2,4,6-triisopropylbenzoic acid, H2DOP = 3,6-dihydroxypyridazine) by electron transfer (ET) is related to the proton coordinate of the bridging ligands. Spectroelectrochemical studies suggest that ET is slower than 109 s−1. The mechanism has been probed using DFT calculations, which show that proton transfer induces a larger dipole in the molecule resulting in ET
    corecore