149 research outputs found
Investigation of Neuronal Cell Type-Specific Gene Expression of Ca(2+)/Calmodulin-dependent Protein Kinase II.
The promoter activity of the rat Ca(2+)/calmodulin-dependent protein kinase II gene was analyzed using the luciferase reporter gene in neuronal and non-neuronal cell lines. Neuronal cell type-specific promoter activity was found in the 5'-flanking region of α and β isoform genes of the kinase. Silencer elements were also found further upstream of promoter regions. A brain-specific protein bound to the DNA sequence of the 5'-flanking region of the gene was found by gel mobility shift analysis in the nuclear extract of the rat brain, including the cerebellum, forebrain, and brainstem, but not in that of non-neuronal tissues, including liver, kidney and spleen. The luciferase expression system and gel shift analysis can be used as an additional and better index by which to monitor gene expression in most cell types
Bradyrhizobium elkanii nod regulon: insights through genomic analysis
Abstract A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes
Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector
Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds
Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied
Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies
Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates
- …