1,089 research outputs found

    Camaronesite, [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4)•1-2H_2O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite

    Get PDF
    Camaronesite (IMA 2012-094), [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4)•1-2H_2O, is a new mineral from near the village of Cuya in the Camarones Valley, Arica Province, Chile. The mineral is a low-temperature, secondary mineral occurring in a sulfate assemblage with anhydrite, botryogen, chalcanthite, copiapite, halotrichite, hexahydrite, hydroniumjarosite, pyrite, römerite, rozenite and szomolnokite. Lavender-coloured crystals up to several mm across form dense intergrowths. More rarely crystals occur as drusy aggregates of tablets up to 0.5 mm in diameter and 0.02 mm thick. Tablets are flattened on {001} and exhibit the forms {001}, {104}, {015} and {018}. The mineral is transparent with white streak and vitreous lustre. The Mohs hardness is 2½, the tenacity is brittle and the fracture is irregular, conchoidal and stepped. Camaronesite has one perfect cleavage on {001}. The measured and calculated densities are 2.43(1) and 2.383 g/cm^3, respectively. The mineral is optically uniaxial (+) with ω = 1.612(1) and ε = 1.621(1) (white light). The pleochroism is O (pale lavender) > E (colourless). Electron-microprobe analyses provided Fe_2O_331.84, P_2O_529.22, SO_315.74, H_2O 23.94 (based on O analyses), total 100.74 wt.%. The empirical formula (based on 2 P a.p.f.u.) is: Fe_(1.94)(PO_3OH)_2(S_(0.96)O_4)(H_2O)_4•1.46H_2O. The mineral is slowly soluble in concentrated HCl and extremely slowly soluble in concentrated H_2SO_4. Camaronesite is trigonal, R32, with cell parameters:a = 9.0833(5), c = 42.944(3) Å, V = 3068.5(3) Å3 and Z = 9. The eight strongest lines in the X-ray powder diffraction pattern are [d_(obs) Å (I)(hkl)]: 7.74(45)(101), 7.415(100)(012), 4.545(72)(110), 4.426(26)(018), 3.862(32)(021,202,116), 3.298(93)(027,119), 3.179(25)(208) and 2.818(25)(1•1•12,125). In the structure of camaronesite (R_1 = 2.28% for 1138 F_o > 4σF), three types of Fe octahedra are linked by corner sharing with (PO_3OH) tetrahedra to form polyhedral layers perpendicular to c with composition [Fe^(3+)(H_2O)_2(PO_3OH)]. Two such layers are joined through SO_4 tetrahedra (in two half-occupied orientations) to form thick slabs of composition [Fe^(3+)(H_2O)_2(PO_3OH)]_2(SO_4). Between the slabs are partially occupied H_2O groups. The only linkages between the slabs are hydrogen bonds. The most distinctive component in the structure consists of two Fe octahedra linked to one another by three PO_4 tetrahedra yielding an [Fe_2(PO_4)_3] unit. This unit is also the key component in the sodium super-ionic conductor (NASICON) structure and has been referred to as the lantern unit. The polyhedral layers in the structure of camaronesite are similar to those in the structure of taranakite. The Raman spectrum exhibits peaks consistent with sulfate, phosphate, water and OH groups

    Joteite, Ca_2CuAl[AsO_4][AsO_3(OH)]_2(OH)_2•5H_2O, a new arsenate with a sheet structure and unconnected acid arsenate groups

    Get PDF
    Joteite (IMA2012-091), Ca_2CuAl[AsO_4][AsO_3(OH)]_2(OH)_2•5H_2O, is a new mineral from the Jote mine, Tierra Amarilla, Copiapó Province, Atacama, Chile. The mineral is a late-stage, lowtemperature, secondary mineral occurring with conichalcite, mansfieldite, pharmacoalumite, pharmacosiderite and scorodite in narrow seams and vughs in the oxidized upper portion of a hydrothermal sulfide vein hosted by volcanoclastic rocks. Crystals occur as sky-blue to greenish-blue thin blades, flattened and twinned on {001}, up to ~300 µm in length, and exhibiting the forms {001}, {010}, {110}, {210} and {111}. The blades are commonly intergrown in wheat-sheaf-like bundles, less commonly in sprays, and sometimes aggregated as dense crusts and cavity linings. The mineral is transparent and has a very pale blue streak and vitreous lustre. The Mohs hardness is estimated at 2 to 3, the tenacity is brittle, and the fracture is curved. It has one perfect cleavage on {001}. The calculated density based on the empirical formula is 3.056 g/cm^3. It is optically biaxial (–) with α = 1.634(1), β = 1.644(1), γ = 1.651(1) (white light), 2V_(meas) = 78(2)° and 2V_(calc) = 79.4°. The mineral exhibits weak dispersion, r Y (pale greenish blue) > X (colourless). The normalized electron-microprobe analyses (average of 5) provided: CaO 15.70, CuO 11.22, Al_2O_38.32, As_2O_546.62, H_2O 18.14 (structure), total 100 wt.%. The empirical formula (based on 19 O a.p.f.u.) is: Ca_(1.98)Cu_(1.00)Al_(1.15)As_(2.87)H_(14.24)O_(19). The mineral is slowly soluble in cold, concentrated HCl. Joteite is triclinic, P1, with the cell parameters: a = 6.0530(2), b = 10.2329(3), c = 12.9112(4) Å, a = 87.572(2), b = 78.480(2), g = 78.697(2)°, V = 768.40(4) Å^3 and Z = 2. The eight strongest lines in the X-ray powder diffraction pattern are [d_(obs) Å (I)(hkl)]: 12.76(100)(001), 5.009(23)(020), 4.206(26)(120,003,121), 3.92(24)(022,022,102), 3.40(25)(113), 3.233(19)(031,023,123,023), 2.97(132,201) and 2.91(15)(122,113). In the structure of joteite (R_1 = 7.72% for 6003 F_o > 4σF), AsO_4 and AsO_3 (OH) tetrahedra, AlO_6 octahedra and Cu^(2+)O_5 square pyramids share corners to form sheets parallel to {001}. In addition, 7- and 8-coordinate Ca polyhedra link to the periphery of the sheets yielding thick slabs. Between the slabs are unconnected AsO_3(OH) tetrahedra, which link the slabs only via hydrogen bonding. The Raman spectrum shows features consistent with OH and/or H_2O in multiple structural environments. The region between the slabs may host excess Al in place of some As

    Independent Validation of the SWMM Green Roof Module

    Get PDF
    Green roofs are a popular Sustainable Drainage Systems (SuDS) technology. They provide multiple benefits, amongst which the retention of rainfall and detention of runoff are of particular interest to stormwater engineers. The hydrological performance of green roofs has been represented in various models, including the Storm Water Management Model (SWMM). The latest version of SWMM includes a new LID green roof module, which makes it possible to model the hydrological performance of a green roof by directly defining the physical parameters of a green roof’s three layers. However, to date, no study has validated the capability of this module for representing the hydrological performance of an extensive green roof in response to actual rainfall events. In this study, data from a previously-monitored extensive green roof test bed has been utilised to validate the SWMM green roof module for both long-term (173 events over a year) and short-term (per-event) simulations. With only 0.357% difference between measured and modelled annual retention, the uncalibrated model provided good estimates of total annual retention, but the modelled runoff depths deviated significantly from the measured data at certain times (particularly during summer) in the year. Retention results improved (with the difference between modelled and measured annual retention decreasing to 0.169% and the Nash-Sutcliffe Model Efficiency (NSME) coefficient for per-event rainfall depth reaching 0.948) when reductions in actual evapotranspiration due to reduced substrate moisture availability during prolonged dry conditions were used to provide revised estimates of monthly ET. However, this aspect of the model’s performance is ultimately limited by the failure to account for the influence of substrate moisture on actual ET rates. With significant differences existing between measured and simulated runoff and NSME coefficients of below 0.5, the uncalibrated model failed to provide reasonable predictions of the green roof’s detention performance, although this was significantly improved through calibration. To precisely model the hydrological behaviour of an extensive green roof with a plastic board drainage layer, some of the modelling structures in SWMM green roof module require further refinement

    Rendering an Account: An Open-State Archive in Postgraduate Supervision

    Get PDF
    The paper begins with a brief account of the transformation of research degree studies under the pressures of global capitalism and neo-liberal governmentality. A parallel transformation is occurring in the conduct of research through the use of information and communication technologies. Yet the potential of ICTs to shape practices of surveillance or to produce new student-supervisor relations and enhance the processes of developing the dissertation has received almost no critical attention. As doctoral supervisor and student, we then describe the features and uses of a web-based open state archive of the student's work-in-progress, developed by the student and accessible to his supervisor. Our intention was to encourage more open conversations between data and theorising, student and supervisor, and ultimately between the student and professional community. However, we recognise that relations of accountability, as these have developed within a contemporary "audit revolution" (Power, 1994, 1997) in universities, create particular "lines of visibility" (Munro, 1996). Thus while the open-state archive may help to redefine in less managerial terms notions of quality, transparency, flexibility and accountability, it might also make possible greater supervisory surveillance. How should we think about the panoptical potential of this archive? We argue that the diverse kinds of interactional patterns and pedagogical intervention it encourages help to create shifting subjectivities. Moreover, the archive itself is multiple, in bringing together an array of diverse materials that can be read in various ways, by following multiple paths. It therefore constitutes a collage, which we identify as a mode of cognition and of accounting distinct from but related to argument and narrative. As a more "open" text (Iser, 1978) it has an indeterminacy which may render it less open to abuse for the technologies of managerial accountability

    Silica coatings on the 1974 Kilauea flow: new SEM and SIMS results and implications for Mars

    Get PDF
    Despite the predominately mafic character of martian surface rocks, silica-rich materials have long been predicted to occur on Mars; recently, those predictions have been validated. CRISM spectra from numerous regions of Mars have revealed H_2O and OH-bearing phases most consistent with amorphous silica. Additionally, the detection of high-silica materials at Home Plate by MER Spirit implied aqueous alteration and leaching in a volcanic environment [3]. In order to fully understand the environments in which silica-rich materials are formed on Mars, it is useful to study silica in analogous terrestrial settings. We focus on silica and Fe-Ti oxide coatings in the Ka’u Desert on the island of Hawaii, an analog to Mars characterized by low levels of rainfall and strong acid-sulfate alteration processes [4]. Many formation mechanisms for these coatings have been proposed, including dissolution of wind-blown tephra [5], leaching of volcanic glass [6], and vapor deposition [7]. We focus on a suite of samples from the 1974 Kilauea pahoehoe flow, collected in 2003. The chemistry and morphology of these coatings were previously presented [8]. Here we present new morphological, spectral and isotopic analyses of the coating suite. The goal of the study is to characterize the coatings and their formation mechanism and describe the implications for silica mobility on Mars

    Callers’ attitudes and experiences of UK breastfeeding helpline support

    Get PDF
    Background: Breastfeeding peer support, is considered to be a key intervention for increasing breastfeeding duration rates. Whilst a number of national organisations provide telephone based breastfeeding peer support, to date there have been no published evaluations into callers’ experiences and attitudes of this support. In this study we report on the descriptive and qualitative insights provided by 908 callers as part of an evaluation of UK-based breastfeeding helpline(s). Methods: A structured telephone interview, incorporating Likert scale responses and open-ended questions was undertaken with 908 callers over May to August, 2011 to explore callers’ experiences of the help and support received via the breastfeeding helpline(s). Results: Overall satisfaction with the helpline was high, with the vast majority of callers’ recalling positive experiences of the help and support received. Thematic analysis was undertaken on all qualitative and descriptive data recorded during the evaluation, contextualised within the main areas addressed within the interview schedule in terms of ‘contact with the helplines’; ‘experiences of the helpline service’, ‘perceived effectiveness of support provision’ and ‘impact on caller wellbeing’. Conclusion: Callers valued the opportunity for accessible, targeted, non-judgmental and convenient support. Whilst the telephone support did not necessarily influence women’s breastfeeding decisions, the support they received left them feeling reassured, confident and more determined to continue breastfeeding. We recommend extending the helpline service to ensure support can be accessed when needed, and ongoing training and support for volunteers. Further advertising and promotion of the service within wider demographic groups is warranted

    Parameterized complexity of DPLL search procedures

    Get PDF
    We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas

    Building social capital through breastfeeding peer support: Insights from an evaluation of a voluntary breastfeeding peer support service in North-West England

    Get PDF
    Background: Peer support is reported to be a key method to help build social capital in communities. To date there are no studies that describe how this can be achieved through a breastfeeding peer support service. In this paper we present findings from an evaluation of a voluntary model of breastfeeding peer support in North-West England to describe how the service was operationalized and embedded into the community. This study was undertaken from May, 2012 to May, 2013. Methods: Interviews (group or individual) were held with 87 participants: 24 breastfeeding women, 13 peer supporters and 50 health and community professionals. The data contained within 23 monthly monitoring reports (January, 2011 to February 2013) compiled by the voluntary peer support service were also extracted and analysed. Results: Thematic analysis was undertaken using social capital concepts as a theoretical lens. Key findings were identified to resonate with ’bonding’, ‘bridging’ and ‘linking’ forms of social capital. These insights illuminate how the peer support service facilitates ‘bonds’ with its members, and within and between women who access the service; how the service ‘bridges’ with individuals from different interests and backgrounds, and how ‘links’ were forged with those in authority to gain access and reach to women and to promote a breastfeeding culture. Some of the tensions highlighted within the social capital literature were also identified. Conclusions: Horizontal and vertical relationships forged between the peer support service and community members enabled peer support to be embedded into care pathways, helped to promote positive attitudes to breastfeeding and to disseminate knowledge and maximise reach for breastfeeding support across the community. Further effort to engage with those of different ethnic backgrounds and to resolve tensions between peer supporters and health professionals is warranted

    Trapping an Iron(VI) Water-Splitting Intermediate in Nonaqueous Media

    Get PDF
    We report in situ spectroscopic measurements in nonaqueous media designed to trap an exceptionally strong oxidant generated electrochemically from an iron-containing nickel layered double hydroxide ([NiFe]-LDH) material. Anodic polarization of this material in acetonitrile produces metal-oxo vibrational spectroscopic signatures along with an extremely narrow near-infrared luminescence peak that strongly indicate that the reactive intermediate is cis-dioxo-iron(VI). Chemical trapping experiments reveal that addition of H_2O to the polarized electrochemical cell produces hydrogen peroxide; and, most importantly, addition of HO– generates oxygen. Repolarization of the electrode restores the iron(VI) spectroscopic features, confirming that the high-valent oxo complex is active in the electrocatalytic water oxidation cycle

    Trapping an Iron(VI) Water-Splitting Intermediate in Nonaqueous Media

    Get PDF
    We report in situ spectroscopic measurements in nonaqueous media designed to trap an exceptionally strong oxidant generated electrochemically from an iron-containing nickel layered double hydroxide ([NiFe]-LDH) material. Anodic polarization of this material in acetonitrile produces metal-oxo vibrational spectroscopic signatures along with an extremely narrow near-infrared luminescence peak that strongly indicate that the reactive intermediate is cis-dioxo-iron(VI). Chemical trapping experiments reveal that addition of H_2O to the polarized electrochemical cell produces hydrogen peroxide; and, most importantly, addition of HO– generates oxygen. Repolarization of the electrode restores the iron(VI) spectroscopic features, confirming that the high-valent oxo complex is active in the electrocatalytic water oxidation cycle
    corecore