1,146 research outputs found
Space station integrated propulsion and fluid systems study
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems
Controlled complete suppression of single-atom inelastic spin and orbital cotunnelling
The inelastic portion of the tunnel current through an individual magnetic
atom grants unique access to read out and change the atom's spin state, but it
also provides a path for spontaneous relaxation and decoherence. Controlled
closure of the inelastic channel would allow for the latter to be switched off
at will, paving the way to coherent spin manipulation in single atoms. Here we
demonstrate complete closure of the inelastic channels for both spin and
orbital transitions due to a controlled geometric modification of the atom's
environment, using scanning tunnelling microscopy (STM). The observed
suppression of the excitation signal, which occurs for Co atoms assembled into
chain on a CuN substrate, indicates a structural transition affecting the
d orbital, effectively cutting off the STM tip from the spin-flip
cotunnelling path.Comment: 4 figures plus 4 supplementary figure
Spin splitting in a polarized quasi-two-dimensional exciton gas
We have observed a large spin splitting between "spin" and
heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs
quantum wells in the absence of any external magnetic field. Time-resolved
photoluminescence spectroscopy, under excitation with circularly polarized
light, reveals that, for high excitonic density and short times after the
pulsed excitation, the emission from majority excitons lies above that of
minority ones. The amount of the splitting, which can be as large as 50% of the
binding energy, increases with excitonic density and presents a time evolution
closely connected with the degree of polarization of the luminescence. Our
results are interpreted on the light of a recently developed model, which shows
that, while intra-excitonic exchange interaction is responsible for the spin
relaxation processes, exciton-exciton interaction produces a breaking of the
spin degeneracy in two-dimensional semiconductors.Comment: Revtex, four pages; four figures, postscript file Accepted for
publication in Physical Review B (Rapid Commun.
The Impact of Weather on Influenza and Pneumonia Mortality in New York City, 1975–2002: A Retrospective Study
The substantial winter influenza peak in temperate climates has lead to the hypothesis that cold and/or dry air is a causal factor in influenza variability. We examined the relationship between cold and/or dry air and daily influenza and pneumonia mortality in the cold season in the New York metropolitan area from 1975–2002. We conducted a retrospective study relating daily pneumonia and influenza mortality for New York City and surroundings from 1975–2002 to daily air temperature, dew point temperature (a measure of atmospheric humidity), and daily air mass type. We identified high mortality days and periods and employed temporal smoothers and lags to account for the latency period and the time between infection and death. Unpaired t-tests were used to compare high mortality events to non-events and nonparametric bootstrapped regression analysis was used to examine the characteristics of longer mortality episodes. We found a statistically significant (p = 0.003) association between periods of low dew point temperature and above normal pneumonia and influenza mortality 17 days later. The duration (r = −0.61) and severity (r = −0.56) of high mortality episodes was inversely correlated with morning dew point temperature prior to and during the episodes. Weeks in which moist polar air masses were common (air masses characterized by low dew point temperatures) were likewise followed by above normal mortality 17 days later (p = 0.019). This research supports the contention that cold, dry air may be related to influenza mortality and suggests that warning systems could provide enough lead time to be effective in mitigating the effects
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
Spin separation in digital ferromagnetic heterostructures
In a study of the ferromagnetic phase of a multilayer digital ferromagnetic
semiconductor in the mean-field and effective-mass approximations, we find the
exchange interaction to have the dominant energy scale of the problem,
effectively controlling the spatial distribution of the carrier spins in the
digital ferromagnetic heterostructures. In the ferromagnetic phase, the
majority and minority carriers tend to be in different regions of the space
(spin separation). Hence, the charge distribution of carriers also changes
noticeably from the ferromagnetic to the paramagnetic phase. An example of a
design to exploit these phenomena is given.Comment: 4 pages, 3 figures. Submitted to Phys. Rev.
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Simulation of the Einstein-de Haas effect combining molecular and spin dynamics
The spin and lattice dynamics of a ferromagnetic nanoparticle are studied via
molecular dynamics and with semi-classical spin dynamics simulations where spin
and lattice degrees of freedom are coupled via a dynamic uniaxial anisotropy
term. We show that this model conserves total angular momentum, whereas spin
and lattice angular momentum are not conserved. We carry out simulations of the
the Einstein-de Haas effect for a Fe nanocluster with more than 500 atoms that
is free to rotate, using a modified version of the open-source spinlattice
dynamics code (SPILADY). We show that the rate of angular momentum transfer
between spin and lattice is proportional to the strength of the magnetic
anisotropy interaction. The addition of the anisotropy allows full spin-lattice
relaxation to be achieved on previously reported timescales of \sim 100 ps and
for tight-binding magnetic anisotropy energies comparable to those of small Fe
nanoclusters.Comment: 23 pages, 3 figure
Urine Spot Samples Can Be Used to Estimate 24-Hour Urinary Sodium Excretion in Children.
The gold standard to assess salt intake is 24-h urine collections. Use of a urine spot sample can be a simpler alternative, especially when the goal is to assess sodium intake at the population level. Several equations to estimate 24-h urinary sodium excretion from urine spot samples have been tested in adults, but not in children.
The objective of this study was to assess the ability of several equations and urine spot samples to estimate 24-h urinary sodium excretion in children.
A cross-sectional study of children between 6 and 16 y of age was conducted. Each child collected one 24-h urine sample and 3 timed urine spot samples, i.e., evening (last void before going to bed), overnight (first void in the morning), and morning (second void in the morning). Eight equations (i.e., Kawasaki, Tanaka, Remer, Mage, Brown with and without potassium, Toft, and Meng) were used to estimate 24-h urinary sodium excretion. The estimates from the different spot samples and equations were compared with the measured excretion through the use of several statistics.
Among the 101 children recruited, 86 had a complete 24-h urine collection and were included in the analysis (mean age: 10.5 y). The mean measured 24-h urinary sodium excretion was 2.5 g (range: 0.8-6.4 g). The different spot samples and equations provided highly heterogeneous estimates of the 24-h urinary sodium excretion. The overnight spot samples with the Tanaka and Brown equations provided the most accurate estimates (mean bias: -0.20 to -0.12 g; correlation: 0.48-0.53; precision: 69.7-76.5%; sensitivity: 76.9-81.6%; specificity: 66.7%; and misclassification: 23.0-27.7%). The other equations, irrespective of the timing of the spot, provided less accurate estimates.
Urine spot samples, with selected equations, might provide accurate estimates of the 24-h sodium excretion in children at a population level. At an individual level, they could be used to identify children with high sodium excretion. This study was registered at clinicaltrials.gov as NCT02900261
GTP and Ca2+ Modulate the Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Release in Streptolysin O-Permeabilized Bovine Adrenal Chromaffin Cells
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 μM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTPγS) could not replace GTP but prevented the action of GTP. The effects of GTP and GTPγS were reversible. Neither GTP nor GTPγS induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 μM free Ca2+, a half-maximal Ca2+ release was elicited with ∼0.1 μM IP3. At 1 μM free Ca2+, no Ca2+ release was observed with 0.1 μM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 μM) were required to evoke Ca2+ release. At 8 μM free Ca2+, even 0.25 μM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 μM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. Depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+
- …