561 research outputs found

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard

    Get PDF
    Aim: Species with temperature-dependent sex determination (TSD) are particularly vulnerable to climate change because a resultant skew in population sex ratio can have severe demographic consequences and increase vulnerability to local extinction. The Australian central bearded dragon (Pogona vitticeps) has a thermosensitive ZZ male/ZW female system of genetic sex determination (GSD). High incubation temperatures cause reversal of the ZZ genotype to a viable female phenotype. Nest temperatures in the wild are predicted to vary on a scale likely to produce heterogeneity in the occurrence of sex reversal, and so we predict that sex reversal will correlate positively with inferred incubation conditions. Location: Mainland Australia. Methods: Wild-caught specimens of P. vitticeps vouchered in museum collections and collected during targeted field trips were genotypically and phenotypically sexed to determine the distribution of sex reversal across the species range. To determine whether environmental conditions or genetic structure can explain this distribution, we infer the incubation conditions experienced by each individual and apply a multi-model inference approach to determine which conditions associate with sex reversal. Further, we conduct reduced representation sequencing on a subset of specimens to characterize the population structure of this broadly distributed species. Results: Here we show that sex reversal in this widespread Australian dragon lizard is spatially restricted to the eastern part of the species range. Neither climatic variables during the inferred incubation period nor geographic population genetic structure explain this disjunct distribution of sex reversal. The main source of genetic variation arose from isolation by distance across the species range. Main conclusions: We propose that local genetic adaptation in the temperature threshold for sex reversal can counteract the sex-reversing influence of high incubation temperatures in P. vitticeps. Our study demonstrates that complex evolutionary processes need to be incorporated into modelling biological responses to future climate scenarios

    Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium

    Full text link
    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes 202206^{202-206}Fr performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly-sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes 202206^{202-206}Fr, in addition to the identification of the low-lying states of 202,204^{202,204}Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review

    Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

    Full text link
    The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich 218m,219,229,231Fr^{218m,219,229,231}\text{Fr} isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the 7s 2S1/27s~^{2}S_{1/2} to 8p 2P3/28p~^{2}P_{3/2} atomic transition. The δr2A,221\delta\langle r^{2}\rangle^{A,221} values for 218m,219Fr^{218m,219}\text{Fr} and 229,231Fr^{229,231}\text{Fr} follow the observed increasing slope of the charge radii beyond N = 126N~=~126. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that 220Fr^{220}\text{Fr} has a weakly inverted odd-even staggering while 228Fr^{228}\text{Fr} has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The g(219Fr)=+0.69(1)g(^{219}\text{Fr}) = +0.69(1) value supports a π1h9/2\pi 1h_{9/2} shell model configuration for the ground state. The g(229,231Fr)g(^{229,231}\text{Fr}) values support the tentative Iπ(229,231Fr)=(1/2+)I^{\pi}(^{229,231}\text{Fr}) = (1/2^{+}) spin, and point to a πs1/21\pi s_{1/2}^{-1} intruder ground state configuration.Comment: Accepted for publication with Physical Review

    Accounting for heterogeneity in θ-σ relationship:application to wheat phenotyping using ΕMI

    Get PDF
    Geophysical methods, such as electromagnetic induction (EMI), can be effective for monitoring changes in soil moisture at the field scale, particularly in agricultural applications. The electrical conductivity (σ) inferred from EMI needs to be converted to soil moisture content (θ) using an appropriate relationship. Typically, a single global relationship is applied to an entire agricultural field, however, soil heterogeneity at the field scale may limit the effectiveness of such an approach. One application area that may suffer from such an effect is crop phenotyping. Selecting crop varieties based on their root traits is important for crop breeding and maximizing yield. Hence, high throughput tools for phenotyping the root system architecture and activity at the field-scale are needed. Water uptake is a major root activity and, under appropriate conditions, can be approximated by measuring changes in soil moisture from time-lapse geophysical surveys. We examine here the effect of heterogeneity in the θ-σ relationship using a crop phenotyping study for illustration. In this study, the θ-σ relationship was found to vary substantially across a field site. To account for this, we propose a range of local (plot specific) θ-σ models. We show that the large number of parameters required for these models can be estimated from baseline σ and θ measurements. Finally, we compare the use of global (field scale) and local (plot scale) models with respect to ranking varieties based on the estimated soil moisture content change

    Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter

    Get PDF
    In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated

    Multiband model of high Tc superconductors

    Full text link
    We propose an extension to other high T_{c } compounds of a model introduced earlier for YBCO. In the ''self-doped'' compounds we assume that the doping part (namely the BiO, HgO, TlO planes in BSCCO, HBCCO, TBCCO respectively) is metallic, which leads to a multiband model. This assumption is supported by band structure calculations. Taking a repulsive pairing interaction between these doping bands and the CuO_{2} bands leads to opposite signs for the order parameter on these bands and to nodes whenever the Fermi surfaces of these bands cross. We show that in BSCCO the low temperature dependence of the penetration depth is reasonably accounted for. In this case the nodes are not located near the 45^{o} direction, which makes the experimental determination of the node locations an important test for our model. The situation in HBCCO and TBCCO is rather analogous to BSCCO. We consider the indications given by NMR and find that they rather favor a metallic character for the doping bands. Finally we discuss the cases of NCCO and LSCO which are not ''self-doped'' and where our model does not give nodes.Comment: 11 pages, revtex, 1 figure
    corecore