497 research outputs found
Evolving thermal thresholds explain the distribution of temperature sex reversal in an Australian dragon lizard
Aim: Species with temperature-dependent sex determination (TSD) are particularly vulnerable to climate change because a resultant skew in population sex ratio can have severe demographic consequences and increase vulnerability to local extinction. The Australian central bearded dragon (Pogona vitticeps) has a thermosensitive ZZ male/ZW female system of genetic sex determination (GSD). High incubation temperatures cause reversal of the ZZ genotype to a viable female phenotype. Nest temperatures in the wild are predicted to vary on a scale likely to produce heterogeneity in the occurrence of sex reversal, and so we predict that sex reversal will correlate positively with inferred incubation conditions. Location: Mainland Australia. Methods: Wild-caught specimens of P. vitticeps vouchered in museum collections and collected during targeted field trips were genotypically and phenotypically sexed to determine the distribution of sex reversal across the species range. To determine whether environmental conditions or genetic structure can explain this distribution, we infer the incubation conditions experienced by each individual and apply a multi-model inference approach to determine which conditions associate with sex reversal. Further, we conduct reduced representation sequencing on a subset of specimens to characterize the population structure of this broadly distributed species. Results: Here we show that sex reversal in this widespread Australian dragon lizard is spatially restricted to the eastern part of the species range. Neither climatic variables during the inferred incubation period nor geographic population genetic structure explain this disjunct distribution of sex reversal. The main source of genetic variation arose from isolation by distance across the species range. Main conclusions: We propose that local genetic adaptation in the temperature threshold for sex reversal can counteract the sex-reversing influence of high incubation temperatures in P. vitticeps. Our study demonstrates that complex evolutionary processes need to be incorporated into modelling biological responses to future climate scenarios
Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium
This paper reports on the hyperfine-structure and radioactive-decay studies
of the neutron-deficient francium isotopes Fr performed with the
Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE
facility, CERN. The high resolution innate to collinear laser spectroscopy is
combined with the high efficiency of ion detection to provide a
highly-sensitive technique to probe the hyperfine structure of exotic isotopes.
The technique of decay-assisted laser spectroscopy is presented, whereby the
isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay
tagging of the hyperfine components. Here, we present the first
hyperfine-structure measurements of the neutron-deficient francium isotopes
Fr, in addition to the identification of the low-lying states of
Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review
Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry
The magnetic dipole moments and changes in mean-square charge radii of the
neutron-rich isotopes were measured with the
newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at
ISOLDE, CERN, probing the to atomic
transition. The values for
and follow the observed increasing
slope of the charge radii beyond . The charge radii odd-even
staggering in this neutron-rich region is discussed, showing that
has a weakly inverted odd-even staggering while
has normal staggering. This suggests that both isotopes
reside at the borders of a region of inverted staggering, which has been
associated with reflection-asymmetric shapes. The value supports a shell model configuration for the
ground state. The values support the tentative
spin, and point to a intruder ground state configuration.Comment: Accepted for publication with Physical Review
On the Out of Equilibrium Relaxation of the Sherrington - Kirkpatrick model
We derive analytical results for the large-time relaxation of the Sherrington
- Kirkpatrick model in the thermodynamic limit, starting from a random
configuration. The system never achieves local equilibrium in any fixed sector
of phase-space, but remains in an asymptotic out of equilibrium regime. We
propose as a tool, both numerical and analytical, for the study of the out of
equilibrium dynamics of spin-glass models the use of `triangle relations' which
describe the geometry of the configurations at three (long) different times.Comment: 42 Pages + 3 Figures upon reques
Off-Equilibrium Dynamics in Finite-Dimensional Spin Glass Models
The low temperature dynamics of the two- and three-dimensional Ising spin
glass model with Gaussian couplings is investigated via extensive Monte Carlo
simulations. We find an algebraic decay of the remanent magnetization. For the
autocorrelation function a typical
aging scenario with a scaling is established. Investigating spatial
correlations we find an algebraic growth law of
the average domain size. The spatial correlation function scales with . The sensitivity of the
correlations in the spin glass phase with respect to temperature changes is
examined by calculating a time dependent overlap length. In the two dimensional
model we examine domain growth with a new method: First we determine the exact
ground states of the various samples (of system sizes up to )
and then we calculate the correlations between this state and the states
generated during a Monte Carlo simulation.Comment: 38 pages, RevTeX, 14 postscript figure
Physical limits of flight performance in the heaviest soaring bird
Flight costs are predicted to vary with environmental conditions, and this should ultimately determine the movement capacity and distributions of large soaring birds. Despite this, little is known about how flight effort varies with environmental parameters. We deployed bio-logging devices on the world’s heaviest soaring bird, the Andean condor (Vultur gryphus), to assess the extent to which these birds can operate without resorting to powered flight. Our records of individual wingbeats in >216 hours of flight show that condors can sustain soaring across a wide range of wind and thermal conditions, only flapping for 1 % of their flight time. This is amongst the very lowest estimated movement costs in vertebrates. One bird even flew for > 5 hours without flapping, covering ~ 172 km. Overall, > 70 % of flapping flight was associated with take-offs. Movement between weak thermal updrafts at the start of the day also imposed a metabolic cost, with birds flapping towards the end of glides to reach ephemeral thermal updrafts. Nonetheless, the investment required was still remarkably low, and even in winter conditions with weak thermals, condors are only predicted to flap for ~ 2 s per km. The overall flight effort in the largest soaring birds therefore appears to be constrained by the requirements for take-off
A global spectral library to characterize the world's soil
Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
Torque magnetometry on single-crystal high temperature superconductors near the critical temperature: a scaling approach
Angular-dependent magnetic torque measurements performed near the critical
temperature on single crystals of HgBa_{2}CuO_{4+y}, La_{2-x}Sr{x}CuO_{4}, and
YBa_{2}Cu_{3}O_{6.93} are scaled, following the 3D XY model, in order to
determine the scaling function dG^{\pm}(z)/dz which describes the universal
critical properties near T_{c}. A systematic shift of the scaling function with
increasing effective mass anisotropy \gamma = (m_{ab}*/m_{c}*)^{1/2} is
observed, which may be understood in terms of a 3D-2D crossover. Further
evidence for a 3D-2D crossover is found from temperature-dependent torque
measurements carried out in different magnetic fields at different field
orientations \delta, which show a quasi 2D "crossing region'' (M*,T*). The
occurrence of this "crossing phenomenon'' is explained in a phenomenological
way from the weak z dependence of the scaling function around a value z = z*.
The "crossing'' temperature T* is found to be angular-dependent. Torque
measurements above T_{c} reveal that fluctuations are strongly enhanced in the
underdoped regime where the anisotropy is large, whereas they are less
important in the overdoped regime.Comment: 9 pages, 10 figures, submitted to PR
Superconducting Magnetization above the Irreversibility Line in Tl2Ba2CuO6
Piezolever torque magnetometry has been used to measure the magnetization of
superconducting Tl2Ba2CuO6. Three crystals with different levels of oxygen
overdoping were investigated in magnetic fields up to 10 Tesla. In all cases,
the magnetization above the irreversibility line was found to depart from the
behaviour M ~ ln(Hc2/H) of a simple London-like vortex liquid. In particular,
for a strongly overdoped (Tc = 15K) crystal, the remnant superconducting order
above the irreversibility line is characterized by a linear diamagnetic
response (M ~ H) that persists well above Tc and also up to the highest field
employed.Comment: RevTeX, 11 pages, 7 encapsulated PostScript figures, submitted to
Physical Review
- …