6 research outputs found
Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring
Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework
Scientific Opportunities for Monitoring of Environmental Remediation Sites (SOMERS) - 12224
ABSTRACT The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. DOE maintains the largest cleanup program in the world, currently spanning over a million acres in 13 states. The inventory of contaminated materials includes 90 million gallons of radioactive waste, 6.4 trillion liters of groundwater, and 40 million cubic meters of soil and debris. It is not feasible to completely restore many sites to predisposal conditions. Any contamination left in place will require monitoring, engineering controls and/or land use restrictions to protect human health and environment. Research and development efforts to date have focused on improving characterization and remediation. Yet, monitoring will result in the largest life-cycle costs and will be critical to improving performance and protection. Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost-and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework
Recommended from our members
Review Report: Building C-400 Thermal Treatment 90 Percent Remedial Design Report and Site Investigation, Pgdp, Paducah, Kentucky
On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE. If PPPO and their remedial team objectively evaluate each issue and recommendation to formulate a project risk mitigation strategy toward remedial implementation, the ITR team believes that issues can be resolved to maximize the potential to successfully achieve the regulatory goals. The review recommendations are intended to maximize contaminant extraction through improvements to the design, assure defensible performance metrics to measure progress and system shutdown, save cost, and improve the probability of successful full-scale implementation. The ITR team gratefully acknowledges the efforts of the PGDP project team and their support of our review process and commends the PGDP project team for their openness and responsiveness to the review comments and information requests
Recommended from our members
SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE 2008 TECHNICAL REVIEW
Beginning in 2006, the US Department of Energy (DOE) supported nine applied research projects to improve the protection of the Columbia River and mitigate the impacts of Hanford Site groundwater. These projects were funded through a supplemental Congressional budget allocation, and are now in various stages of completion in accordance with the research plans. The DOE Office of Environmental Management Groundwater and Soil Cleanup Technologies (EM-22) sponsored a technical peer review meeting for these projects in Richland WA, July 28-31, 2008. The overall objective of the peer review is to provide information to support DOE decisions about the status and potential future application of the various technologies. The charge for the peer review panel was to develop recommendations for each of the nine 'technologies'. Team members for the July 2008 review were Brian Looney, Gene LeBoeuf, Dawn Kaback, Karen Skubal, Joe Rossabi, Paul Deutsch, and David Cocke. Previous project reviews were held in May 2007 and March-May of 2006. The team used the following four rating categories for projects: (a) Incorporate the technology/strategy in ongoing and future EM activities; (b) Finish existing scope of applied research and determine potential for EM activities when research program is finished; (c) Discontinue current development activities and do not incorporate technology/strategy into ongoing and future EM activities unless a significant and compelling change in potential viability is documented; and (d) Supplement original funded work to obtain the data needed to support a DOE decision to incorporate the technology into ongoing and future EM activities. The supplemental funding portfolio included two projects that addressed strontium, five projects that addressed chromium, one project that addressed uranium and one project that addressed carbon tetrachloride. The projects ranged from in situ treatment methods for immobilizing contaminants using chemical-based methods such as phosphate addition, to innovative surface treatment technologies such as electrocoagulation. Total funding for the nine projects was 2,000,000 in FY 2007. At the Richland meeting, the peer reviewers provided a generally neutral assessment of the projects and overall progress, and a generally positive assessment with regard to the principal investigators meeting their stated research objectives and performing the planned laboratory research and limited field work. Only one project, the Electrocoagulation Treatability Test, received a rating of 'discontinue' from the team because the project goals had not been met. Because this particular project has already ended, no action with respect to funding withdrawal is necessary. All other projects were recommended to be finished and/or incorporated into field efforts at Hanford. Specific technical comments and recommendations were provided by the team for each project
Recommended from our members
Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring
Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework