1,690 research outputs found

    Report of the sensor cooler technology panel

    Get PDF
    The Sensor Cooler Technology Panel identified three major areas in which technology development must be supported in order to meet the system performance requirements for the Astrotech 21 mission set science objectives. They are: long life vibration free refrigerators; mechanical refrigeration for 2 K to 5 K; and flight testing of emerging prototype refrigerators. A development strategy and schedule were recommended for each of the three areas

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Technical ReportThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Project PosterThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    The use of 35S and Tnos expression elements in the measurement of genetically engineered plant materials

    Get PDF
    An online survey was conducted by the International Life Sciences Institute, Food Biotechnology Committee, on the use of qualitative and quantitative polymerase chain reaction (PCR) assays for cauliflower mosaic virus 35S promoter and Agrobacterium tumefaciens Tnos DNA sequence elements for the detection of genetically engineered (GE) crop plant material. Forty-four testing laboratories around the world completed the survey. The results showed the widespread use of such methods, the multiplicity of published and in-house methods, and the variety of reference materials and calibrants in use. There was an interest on the part of respondents in validated quantitative assays relevant to all GE events that contain these two genetic elements. Data are presented by testing two variations each of five published real-time quantitative PCR methods for 35S detection on eight maize reference materials. The results showed that two of the five methods were not suitable for all the eight reference materials, with poor linear regression parameters and multiple PCR amplification products for some of the reference materials. This study demonstrates that not all 35S methods produce satisfactory results, emphasizing the need for method validation

    Bipartite Graph Learning for Autonomous Task-to-Sensor Optimization

    Get PDF
    NPS NRP Executive SummaryThis study addresses the question of how machine learning/artificial intelligence can be applied to identify the most appropriate 'sensor' for a task, to prioritize tasks, and to identify gaps/unmet requirements. The concept of a bipartite graph provides a mathematical framework for task-to-sensor mapping by establishing connectivity between various high-level tasks and the specific sensors and processes that must be invoked to fulfil those tasks and other mission requirements. The connectivity map embedded in the bipartite graph can change depending on the availability/unavailability of resources, the presence of constraints (physics, operational, sequencing), and the satisfaction of individual tasks. Changes can also occur according to the valuation, re-assignment and re-valuation of the perceived task benefit and how the completion of a specific task (or group of tasks) can contribute to the state of knowledge. We plan to study how machine learning can be used to perform bipartite learning for task-to-sensor planning.Naval Special Warfare Command (NAVSPECWARCOM)N9 - Warfare SystemsThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval OperationsĀ (CNO)Approved for public release. Distribution is unlimited.

    Expanding the Causal Menu: An Interventionist Perspective on Explaining Human Behavioral Evolution

    Get PDF
    Theorists of human evolution are interested in understanding major shifts in human behavioral capacities (e.g., the creation of a novel technological industry, such as the Acheulean). This task faces empirical challenges arising both from the complexity of these events and the time-depths involved. However, we also confront issues of a more philosophical nature, such as how to best think about causation and explanation. This article considers such fundamental questions from the perspective of a prominent theory of causation in the philosophy of science literature, namely, the interventionist theory of causation. A signature feature of this framework is its recognition of a family of distinct types of causes. We set out several of these causal notions and show how they can contribute to explaining transitions in human behavioral complexity. We do so, first, in a preliminary way, and then in a more detailed way, taking the origins of behavioral modernity as our extended case study. We conclude by suggesting some ways in which the approach developed here might be elaborated and extended

    Successful Tricuspid Valve Replacement in a Patient with Severe Pulmonary Arterial Hypertension and Preserved Right Ventricular Systolic Function

    Get PDF
    A 56-year-old patient with severe pulmonary hypertension developed severe tricuspid regurgitation, right-sided heart failure, and congestive hepatopathy. She was transferred for possible lung transplant and/or tricuspid valve surgery. Clinical and echocardiographic assessment provided confidence that acute tricuspid valve failure was responsible for the decompensation and that tricuspid valve replacement despite pulmonary hypertension could be performed
    • ā€¦
    corecore