881 research outputs found

    Paradigm shift or business as usual? Workers' views on multi-stakeholder initiatives in Bangladesh

    Get PDF
    The scale of the tragedy at Rana Plaza in Bangladesh, in which more than 1,000 garment factory workers died when the building collapsed in April 2013, galvanized a range of stakeholders to take action to prevent future disasters and to acknowledge that business as usual was not an option. Prominent in these efforts were the Accord on Fire and Building Safety in Bangladesh (hereafter the Accord) and the Alliance for Bangladesh Workers’ Safety (hereafter the Alliance), two multi‐stakeholder agreements that brought global buyers together in a coordinated effort to improve health and safety conditions in the ready‐made garment industry. These agreements represented a move away from the buyer‐driven, compliance‐based model, which hitherto dominated corporate social responsibility initiatives, to a new cooperation‐based approach. The Accord in particular, which included global union federations and their local union partners as signatories and held global firms legally accountable, was described as a ‘paradigm shift’ with the potential to improve industrial democracy in Bangladesh. This article is concerned with the experiences and perceptions of workers in the Bangladesh garment industry regarding these new initiatives. It uses a purposively designed survey to explore the extent to which these initiatives brought about improvements in wages and working conditions in the garment industry, to identify where change was slowest or absent and to ask whether the initiatives did indeed represent a paradigm shift in efforts to enforce the rights of workers

    SUSY Parameter Analysis at TeV and Planck Scales

    Full text link
    Coherent analyses at future LHC and LC experiments can be used to explore the breaking mechanism of supersymmetry and to reconstruct the fundamental theory at high energies, in particular at the grand unification scale. This will be exemplified for minimal supergravity.Comment: 7 pages, 3 figures, uses espcrc2.sty (included), Proceedings, Loops and Legs 2004, Zinnowitz on Usedo

    High Pressure Processing of Dairy Foods

    Get PDF
    End of Project ReportThe term High Pressure Processing (HPP) is used to describe the technology whereby products are exposed to very high pressures in the region of 50 - 800 MPa (500 - 8000 Atmospheres). The potential application of HPP in the food industry has gained popularity in recent years, due to developments in the construction of HPP equipment which makes the technology more affordable. Applying HPP to food products results in modifications to interactions between individual components, rates of enzymatic reactions and inactivation of micro-organisms. The first commercial HPP products appeared on the market in 1991 in Japan, where HPP is now being used commercially for products such as jams, sauces, fruit juices, rice cakes and desserts. The pioneering research into the application of HPP to milk dates back to the end of the 19th century. Application of HPP to milk has been shown to modify its gel forming characteristics as well as reducing its microbial load. HPP offers the potential to induce similar effects to those generated by heat on milk protein. Recent reports have also indicated that HPP could accelerate the ripening of cheese. Much of the Irish cheese industry is based on the production of Cheddar cheese, the ripening time for which can vary from 4 - 12 months or more, depending on grade. A substantial portion of the cost associated with Cheddar manufacture is therefore attributed to storage under controlled conditions during ripening. Thus, any technology which may accelerate the ripening of Cheddar cheese while maintaining a balanced flavour and texture is of major economic significance. While food safety is a dominant concern, consumers are increasingly demanding foods that maintain their natural appearance and flavour, while free of chemical preservatives. HPP offers the food industry the possibility of achieving these twin goals as this technology can lead to reduced microbial loads without detrimentally effecting the nutritional or sensory qualities of the product. The development of food ingredients with novel functional properties offers the dairy industry an opportunity to revitalise existing markets and develop new ones. HPP can lead to modifications in the structure of milk components, in particular protein, which may provide interesting possibilities for the development of high value nutritional and functional ingredients. Hence these projects set out to investigate the potential of HPP in the dairy industry and to identify products and processes to which it could be applied.Department of Agriculture, Food and the Marin

    Measuring geometric phases of scattering states in nanoscale electronic devices

    Get PDF
    We show how a new quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of the new geometric phase. The setup involves a double path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.Comment: Six pages two figure

    Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts

    Get PDF
    BACKGROUND: The magnitude of the association between Helicobacter pylori and incidence of gastric cancer is unclear. H pylori infection and the circulating antibody response can be lost with development of cancer; thus retrospective studies are subject to bias resulting from classifi- cation of cases as H pylori negative when they were infected in the past. AIMS: To combine data from all case control studies nested within prospective cohorts to assess more reliably the relative risk of gastric cancer associated with H pylori infection.To investigate variation in relative risk by age, sex, cancer type and subsite, and interval between blood sampling and cancer diagnosis. METHODS: Studies were eligible if blood samples for H pylori serology were collected before diagnosis of gastric cancer in cases. Identified published studies and two unpublished studies were included. Individual subject data were obtained for each. Matched odds ratios (ORs) and 95% confidence intervals (95% CI) were calculated for the association between H pylori and gastric cancer. RESULTS: Twelve studies with 1228 gastric cancer cases were considered. The association with H pylori was restricted to noncardia cancers (OR 3.0; 95% CI 2.3–3.8) and was stronger when blood samples for H pylori serology were collected 10+ years before cancer diagnosis (5.9; 3.4–10.3). H pylori infection was not associated with an altered overall risk of cardia cancer (1.0; 0.7–1.4). CONCLUSIONS: These results suggest that 5.9 is the best estimate of the relative risk of non-cardia cancer associated with H pylori infection and that H pylori does not increase the risk of cardia cancer. They also support the idea that when H pylori status is assessed close to cancer diagnosis, the magnitude of the non-cardia association may be underestimated

    Optimizing the production of dsRNA biocontrols in microbial systems using multiple transcriptional terminators

    Get PDF
    Crop pests and pathogens annually cause over $220 billion in global crop damage, with insects consuming 5%–20% of major grain crops. Current crop pest and disease control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes, and agricultural practices. Double-stranded RNA (dsRNA) is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. Successful commercialization of dsRNA-based biocontrols requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. In this study, we have optimized the design of plasmid DNA constructs to produce dsRNA biocontrols in Escherichia coli, by employing a wide range of alternative synthetic transcriptional terminators before measurement of dsRNA yield. We demonstrate that a 7.8-fold increase of dsRNA was achieved using triple synthetic transcriptional terminators within a dual T7 dsRNA production system compared to the absence of transcriptional terminators. Moreover, our data demonstrate that batch fermentation production dsRNA using multiple transcriptional terminators is scalable and generates significantly higher yields of dsRNA generated in the absence of transcriptional terminators at both small-scale batch culture and large-scale fermentation. In addition, we show that application of these dsRNA biocontrols expressed in E. coli cells results in increased insect mortality. Finally, novel mass spectrometry analysis was performed to determine the precise sites of transcriptional termination at the different transcriptional terminators providing important further mechanistic insight

    Medullary Thyroid Carcinoma Surveillance Study: A Case-Series Registry

    Get PDF
    The Medullary Thyroid Carcinoma (MTC) Surveillance Study [the MTC registry (1)] is a case-series registry established in 2010 as a Food and Drug Administration (FDA) postmarketing commitment for liraglutide, the first long-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) approved in the United States. Subsequently, other GLP-1 RAs have been developed and brought to market, including exenatide (AstraZeneca, PLC), albiglutide (GlaxoSmithKline, PLC), dulaglutide (Eli Lilly and Company), and semaglutide (Novo Nordisk A/S), and are included in the MTC registry. Additional pharmaceutical companies (sponsors) who receive FDA approval for new GLP-1 RA products may also be asked to participate in this registry

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres
    • 

    corecore