4 research outputs found

    Personalised reprogramming to prevent progressive pacemaker-related left ventricular dysfunction: A phase II randomised, controlled clinical trial

    Get PDF
    Background Pacemakers are widely utilised to treat bradycardia, but right ventricular (RV) pacing is associated with heightened risk of left ventricular (LV) systolic dysfunction and heart failure. We aimed to compare personalised pacemaker reprogramming to avoid RV pacing with usual care on echocardiographic and patient-orientated outcomes. Methods A prospective phase II randomised, double-blind, parallel-group trial in 100 patients with a pacemaker implanted for indications other than third degree heart block for ≥2 years. Personalised pacemaker reprogramming was guided by a published protocol. Primary outcome was change in LV ejection fraction on echocardiography after 6 months. Secondary outcomes included LV remodeling, quality of life, and battery longevity. Results Clinical and pacemaker variables were similar between groups. The mean age (SD) of participants was 76 (+/-9) years and 71% were male. Nine patients withdrew due to concurrent illness, leaving 91 patients in the intention-to-treat analysis. At 6 months, personalised programming compared to usual care, reduced RV pacing (-6.5±1.8% versus -0.21±1.7%; p<0.01), improved LV function (LV ejection fraction +3.09% [95% confidence interval (CI) 0.48 to 5.70%; p = 0.02]) and LV dimensions (LV end systolic volume indexed to body surface area -2.99mL/m2 [95% CI -5.69 to -0.29; p = 0.03]). Intervention also preserved battery longevity by approximately 5 months (+0.38 years [95% CI 0.14 to 0.62; p<0.01)) with no evidence of an effect on quality of life (+0.19, [95% CI -0.25 to 0.62; p = 0.402]). Conclusions Personalised programming in patients with pacemakers for bradycardia can improve LV function and size, extend battery longevity, and is safe and acceptable to patients. Trial registration ClinicalTrials.gov identifier: NCT03627585

    The Multifunctional Role of Ectomycorrhizal Associations in Forest Ecosystem Processes

    No full text

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore