14 research outputs found
Recommended from our members
Molecular origins of tissue vulnerability to aberrant aggregation in protein misfolding diseases
Neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), are increasingly common in our ageing society, are remain incurable. A major obstacle encountered by researchers in their attempts to find effective therapies is represented by the current lack of understanding of the molecular origins of these disorders. It is becoming clear that, although the aggregation of specific proteins, including amyloid β (Aβ) and tau in AD and α-synuclein in PD, hallmark these disorders, such behaviour is a consequence of a wider, system-level disruption of protein homeostasis. In order to identify the genetic factors contributing to such a disruption, the transcriptional changes that occur during neurodegenerative disease progression have received considerable scientific attention in recent years. In our approach, we considered another hallmark of these diseases - their characteristic patterns of spreading across the brain - to identify the nature of the transcriptional signature which underlies tissue vulnerability to protein aggregation. By understanding why tissues succumb in their characteristic sequential pattern in neurodegenerative diseases, and why some tissues remain almost completely resistant throughout, we hoped to obtain insight into the molecular origins of these disorders. Our results show that the AD progression can be predicted from a transcriptional signature in healthy brains related to the protein aggregation homeostasis of Aβ, tau, and the wider proteome. We highlight a relationship between a specific subproteome at high risk of aggregation (formed by supersaturated proteins), and the vulnerability to neurodegenerative diseases. We thus identify an AD-specific supersaturated set of proteins - termed the metastable subproteome, whose expression in normal brains recapitulates the staging of AD, with more vulnerable tissues having higher metastable subproteome expression. We find evidence of these vulnerability signatures transcending the tissue level of interrogation, with cellular and subcellular analysis also showing elevated levels of proteins known and predicted to predispose the aberrant aggregation of Aβ and tau. These results characterise the key protein homeostasis pathways in the inception and progression of AD, and establish an approach with the potential to be applied to other protein misfolding diseases, in the brain and beyond
Recommended from our members
Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerability in Alzheimer's disease.
Neurodegenerative disorders progress across the brain in characteristic spatio-temporal patterns. A better understanding of the factors underlying the specific cell and tissue vulnerability responsible for such patterns could help identify the molecular origins of these conditions. To investigate these factors, based on the observation that neurodegenerative disorders are closely associated with the presence of aberrant protein deposits, we made the hypothesis that the vulnerability of cells and tissues is associated to the overall levels of supersaturated proteins, which are those most metastable against aggregation. By analyzing single-cell transcriptomic and subcellular proteomics data on healthy brains of ages much younger than those typical of disease onset, we found that the most supersaturated proteins are enriched in cells and tissues that succumb first to neurodegeneration. Then, by focusing the analysis on a metastable subproteome specific to Alzheimer's disease, we show that it is possible to recapitulate the pattern of disease progression using data from healthy brains. We found that this metastable subproteome is significantly enriched for synaptic processes and mitochondrial energy metabolism, thus rendering the synaptic environment dangerous for aggregation. The present identification of protein supersaturation as a signature of cell and tissue vulnerability in neurodegenerative disorders could facilitate the search for effective treatments by providing clearer points of intervention
A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology.
Excitatory neurons are preferentially impaired in early Alzheimer's disease but the pathways contributing to their relative vulnerability remain largely unknown. Here we report that pathological tau accumulation takes place predominantly in excitatory neurons compared to inhibitory neurons, not only in the entorhinal cortex, a brain region affected in early Alzheimer's disease, but also in areas affected later by the disease. By analyzing RNA transcripts from single-nucleus RNA datasets, we identified a specific tau homeostasis signature of genes differentially expressed in excitatory compared to inhibitory neurons. One of the genes, BCL2-associated athanogene 3 (BAG3), a facilitator of autophagy, was identified as a hub, or master regulator, gene. We verified that reducing BAG3 levels in primary neurons exacerbated pathological tau accumulation, whereas BAG3 overexpression attenuated it. These results define a tau homeostasis signature that underlies the cellular and regional vulnerability of excitatory neurons to tau pathology
Recommended from our members
Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerability in Alzheimer's disease.
Neurodegenerative disorders progress across the brain in characteristic spatio-temporal patterns. A better understanding of the factors underlying the specific cell and tissue vulnerability responsible for such patterns could help identify the molecular origins of these conditions. To investigate these factors, based on the observation that neurodegenerative disorders are closely associated with the presence of aberrant protein deposits, we made the hypothesis that the vulnerability of cells and tissues is associated to the overall levels of supersaturated proteins, which are those most metastable against aggregation. By analyzing single-cell transcriptomic and subcellular proteomics data on healthy brains of ages much younger than those typical of disease onset, we found that the most supersaturated proteins are enriched in cells and tissues that succumb first to neurodegeneration. Then, by focusing the analysis on a metastable subproteome specific to Alzheimer's disease, we show that it is possible to recapitulate the pattern of disease progression using data from healthy brains. We found that this metastable subproteome is significantly enriched for synaptic processes and mitochondrial energy metabolism, thus rendering the synaptic environment dangerous for aggregation. The present identification of protein supersaturation as a signature of cell and tissue vulnerability in neurodegenerative disorders could facilitate the search for effective treatments by providing clearer points of intervention
Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS.
Amyotrophic lateral sclerosis (ALS) is a heterogeneous degenerative motor neuron disease linked to numerous genetic mutations in apparently unrelated proteins. These proteins, including SOD1, TDP-43, and FUS, are highly aggregation-prone and form a variety of intracellular inclusion bodies that are characteristic of different neuropathological subtypes of the disease. Contained within these inclusions are a variety of proteins that do not share obvious characteristics other than coaggregation. However, recent evidence from other neurodegenerative disorders suggests that disease-affected biochemical pathways can be characterized by the presence of proteins that are supersaturated, with cellular concentrations significantly greater than their solubilities. Here, we show that the proteins that form inclusions of mutant SOD1, TDP-43, and FUS are not merely a subset of the native interaction partners of these three proteins, which are themselves supersaturated. To explain the presence of coaggregating proteins in inclusions in the brain and spinal cord, we observe that they have an average supersaturation even greater than the average supersaturation of the native interaction partners in motor neurons, but not when scores are generated from an average of other human tissues. These results suggest that inclusion bodies in various forms of ALS result from a set of proteins that are metastable in motor neurons, and thus prone to aggregation upon a disease-related progressive collapse of protein homeostasis in this specific setting.P.C. was supported by grants from the US-UK Fulbright Commission, St. John’s College, University of Cambridge, and NIH (Northwestern University Medical Scientist Training Program Grant T32 GM8152-28). I.A.L.-S. was supported by Rotary Health Australia. D.M.B., S.G.O., and G.F. were supported by the Wellcome Trust/Medical Research Council (Grant Code 089703/Z/09/Z). D.N.S. was supported by a National Health and Medical Research Council (NHMRC) Project grant. R.I.M. was supported by grants from the NIH (National Institute of General Medical Sciences, National Institute on Aging, and National Institute of Neurological Disorders and Stroke), Ellison Medical Foundation, Glenn Foundation, and Daniel F. and Ada L. Rice Foundation. C.M.D. and M.V. are members of the Cambridge Centre for Misfolding Diseases and were supported by the Wellcome Trust. J.J.Y. was supported by grants from the NHMRC (Grants 1095215 and 1084144), Motor Neuron Disease Research Institute of Australia, and Australian Research Council (Grant DE120102840). F.C. and G.G.T. acknowledge support from the European Research Council (RIBOMYLOME_309545) and Spanish Ministry of Economy and Competitiveness (BFU2014-55054-P)
Clinical support during covid-19: An opportunity for service and learning? A cross-sectional survey of UK medical students
PurposeMedical students providing support to clinical teams during Covid-19 may have been an opportunity for service and learning. We aimed to understand why the reported educational impact has been mixed to inform future placements.MethodsWe conducted a cross-sectional survey of medical students at UK medical schools during the first Covid-19 'lockdown' period in the UK (March-July 2020). Analysis was informed by the conceptual framework of service and learning.Results1245 medical students from 37 UK medical schools responded. 57% of respondents provided clinical support across a variety of roles and reported benefits including increased preparedness for foundation year one compared to those who did not (p ConclusionThe conceptual framework of service and learning can help explain why student experiences have been heterogeneous. We highlight how this conceptual framework can be used to inform clinical placements in the future, in particular the risks, benefits, and structures.[Box: see text]