218 research outputs found

    Magnus Expansion and Three-Neutrino Oscillations in Matter

    Full text link
    We present a semi-analytical derivation of the survival probability of solar neutrinos in the three generation scheme, based on the Magnus approximation of the evolution operator of a three level system, and assuming a mass hierarchy among neutrino mass eigenstates. We have used an exponential profile for the solar electron density in our approximation. The different interesting density regions that appear throughout the propagation are analyzed. Finally, some comments on the allowed regions in the solar neutrino parameter space are addressed.Comment: RevTex4 style, 5 pages including 5 figures. Presented at Mexican School of Astrophysics 2002, Guanajuato, Mexico, 31 Jul - 7 Aug 2002. Final version to appear in the Proceedings of IX Mexican Workshop on Particles and Fields Physics Beyond the Standard Model, Colima Col. Mexico, November 17-22, 200

    Electromagnetic Form Factors of a Massive Neutrino

    Full text link
    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary RξR_{\xi} gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the charge, magnetic, and anapole form factors, in which the dependence on the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various generations of the neutrino. Explicit expressions are obtained for the charge, magnetic, and electric dipole and anapole transition form factors as well as for the transition electric dipole moment.Comment: 16 pares with 5 figures in pdf forma

    On the thermal footsteps of Neutralino relic gases

    Full text link
    Current literature suggests that neutralinos are the dominant cold dark matter particle species. Assuming the microcanonical definition of entropy, we examine the local entropy per particle produced between the ``freeze out'' era to the present. An ``entropy consistency'' criterion emerges by comparing this entropy with the entropy per particle of actual galactic structures given in terms of dynamical halo variables. We apply this criterion to the cases when neutralinos are mosly b-inos and mostly higgsinos, in conjunction with the usual ``abundance'' criterion requiring that present neutralino relic density complies with 0.1 < \Omega_{\chic{\tilde\chi^0_1}} < 0.3 for h0.65h\simeq 0.65. The joint application of both criteria reveals that a better fitting occurs for the b-ino channels, hence the latter seem to be favoured over the higgsino channels. The suggested methodology can be applied to test other annihilation channels of the neutralino, as well as other particle candidates of thermal gases relics.Comment: LaTex AIP style, 8 pages including 1 figure. Final version to appear in Proceedings of the Mexican School of Astrophysics (EMA), Guanajuato, M\'exico, July 31 - August 7, 200

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Social support for students with visual impairments in educational institutions : an integrative literature review

    Get PDF
    Students with visual impairments often experience emotional problems and encounter difficulties in forming and maintaining social relationships. Research indicates that the social support provided to these students by staff members and their peers in educational institutions may have a positive impact on their academic learning and socioemotional development. The purpose of this integrative literature review was to synthesise the results from 17 academic articles published during 1998 and 2018, which examined the topic of social support for students with visual impairments in educational institutions. This review reveals that for students with visual impairments cooperation, empathetic behaviour, and practical assistance are the main components of social support. These students actively seek social support from staff members and peers, but they face many challenges, such as the lack of training and awareness. Support from staff members contributes to students’ academic learning and social inclusion, whereas peers’ social support enhances their self-esteem and social acceptance. The outlined positive effects of educational interventions on students’ social skills and social interaction support the need for implementing more interventions. The limitations of the studies reviewed and recommendations for future research are discussed

    Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3

    Get PDF
    Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48, have revealed a new monoclinic phase in the vicinity of the morphotropic phase boundary (MPB), previously regarded as the the boundary separating the rhombohedral and tetragonal regions of the PZT phase diagram. In the present paper, the stability region of all three phases has been established from high resolution synchrotron x-ray powder diffraction measurements on a series of highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature is increased. A first-order phase transition from tetragonal to rhombohedral symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to the tetragonal-rhombohedral phase boundary, but instead to the boundary between the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides important insight into the close relationship between the monoclinic phase and the striking piezoelectric properties of PZT; in particular, investigations of poled samples have shown that the monoclinic distortion is the origin of the unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde

    Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV

    Get PDF
    The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    A spherical scalar-tensor galaxy model

    Full text link
    We build a spherical halo model for galaxies using a general scalar-tensor theory of gravity in its Newtonian limit. The scalar field is described by a time-independent Klein-Gordon equation with a source that is coupled to the standard Poisson equation of Newtonian gravity. Our model, by construction, fits both the observed rotation velocities of stars in spirals and a typical luminosity profile. As a result, the form of the new Newtonian potential, the scalar field, and dark matter distribution in a galaxy are determined. Taking into account the constraints for the fundamental parameters of the theory (lambda,alpha), we analyze the influence of the scalar field in the dark matter distribution, resulting in shallow density profiles in galactic centers.Comment: 14 pages, 16 plots set in 7 figures, typos and references adde

    Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

    Get PDF
    The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results have a direct impact on the s-process abundance of 206Pb, which represents an important test for the interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.
    corecore