3,727 research outputs found

    Large-Scale Regular Morphological Patterns in the Radio Jet of NGC 6251

    Get PDF
    We report on large-scale, regular morphological patterns found in the radio jet of the nearby radio galaxy NGC 6251. Investigating morphological properties of this radio jet from the nucleus to a radial distance of \sim 300 arcsec (\approx 140 kpc) mapped at 1662 MHz and 4885 MHz by Perley, Bridle, & Willis, we find three chains, each of which consists of five radio knots. We also find that eight radio knots in the first two chains consist of three small sub-knots (the triple-knotty substructures). We discuss the observational properties of these regular morphological patterns.Comment: 8 figures, 15 pages, accepted for publication in A

    Simulation of structural and electronic properties of amorphous tungsten oxycarbides

    Get PDF
    Electron beam induced deposition with tungsten hexacarbonyl W(CO)6 as precursors leads to granular deposits with varying compositions of tungsten, carbon and oxygen. Depending on the deposition conditions, the deposits are insulating or metallic. We employ an evolutionary algorithm to predict the crystal structures starting from a series of chemical compositions that were determined experimentally. We show that this method leads to better structures than structural relaxation based on guessed initial structures. We approximate the expected amorphous structures by reasonably large unit cells that can accommodate local structural environments that resemble the true amorphous structure. Our predicted structures show an insulator to metal transition close to the experimental composition at which this transition is actually observed. Our predicted structures also allow comparison to experimental electron diffraction patterns.Comment: 17 Pages, 11 figure

    Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis

    Get PDF
    We present an extensive synthetic observational analysis of numerically- simulated radio galaxies designed to explore the effectiveness of conventional observational analyses at recovering physical source properties. These are the first numerical simulations with sufficient physical detail to allow such a study. The present paper focuses on extraction of magnetic field properties from nonthermal intensity information. Synchrotron and inverse-Compton intensities provided meaningful information about distributions and strengths of magnetic fields, although considerable care was called for. Correlations between radio and X-ray surface brightness correctly revealed useful dynamical relationships between particles and fields. Magnetic field strength estimates derived from the ratio of X-ray to radio intensity were mostly within about a factor of two of the RMS field strength along a given line of sight. When emissions along a given line of sight were dominated by regions close to the minimum energy/equipartition condition, the field strengths derived from the standard power-law-spectrum minimum energy calculation were also reasonably close to actual field strengths, except when spectral aging was evident. Otherwise, biases in the minimum- energy magnetic field estimation mirrored actual differences from equipartition. The ratio of the inverse-Compton magnetic field to the minimum-energy magnetic field provided a rough measure of the actual total energy in particles and fields in most instances, within an order of magnitude. This may provide a practical limit to the accuracy with which one may be able to establish the internal energy density or pressure of optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2 February 1, 200

    Interplay of nematic and magnetic orders in FeSe under pressure

    Get PDF
    We offer an explanation for the recently observed pressure-induced magnetic state in the iron-chalcogenide FeSe based on \textit{ab initio} estimates for the pressure evolution of the most important Coulomb interaction parameters. We find that an increase of pressure leads to an overall decrease mostly in the nearest-neighbor Coulomb repulsion, which in turn leads to a reduction of the nematic order and the generation of magnetic stripe order. We treat the concomitant effects of band renormalization and the induced interplay of nematic and magnetic order in a self-consistent way and determine the generic topology of the temperature-pressure phase diagram, and find qualitative agreement with the experimentally determined phase diagram.Comment: 13 pages, 6 fig

    Structure of the X-ray Emission from the Jet of 3C 273

    Get PDF
    We present images from five observations of the quasar 3C 273 with the Chandra X-ray Observatory. The jet has at least four distinct features which are not resolved in previous observations. The first knot in the jet (A1) is very bright in X-rays. Its X-ray spectrum is well fitted with a power law with alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of this knot from 1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02, similar to the X-ray spectral slope. Thus, we place a lower limit on the total power radiated by this knot of 1.5e43 erg/s; substantially more power may be emitted in the hard X-ray and gamma-ray bands. Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron emission may also explain the X-ray emission but a spectral bend is required near the optical band. For knots A1 and B1, the X-ray flux dominates the emitted energy. For the remaining optical knots (C through H), localized X-ray enhancements that might correspond to the optical features are not clearly resolved. The position angle of the jet ridge line follows the optical shape with distinct, aperiodic excursions of +/-1 deg from a median value of -138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and 10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical Journal Letters. For the color image, see fig1.ps or http://space.mit.edu/~hermanm/papers/3c273/fig1.jp

    The Optical-Near-IR Spectrum of the M87 Jet From HST Observations

    Get PDF
    We present 1998 HST observations of M87 which yield the first single-epoch optical and radio-optical spectral index images of the jet at 0.150.15'' resolution. We find 0.67 \approx 0.67, comparable to previous measurements, and 0.9 \approx 0.9 (FνναF_\nu \propto \nu^{-\alpha}), slightly flatter than previous workers. Reasons for this discrepancy are discussed. These observations reveal a large variety of spectral slopes. Bright knots exhibit flatter spectra than interknot regions. The flattest spectra (αo0.50.6\alpha_o \sim 0.5-0.6; comparable to or flatter than αro\alpha_{ro}) are found in two inner jet knots (D-East and HST-1) which contain the fastest superluminal components. In knots A, B and C, αo\alpha_o and αro\alpha_{ro} are essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes in αro\alpha_{ro} lag changes in αo\alpha_o, but in knots D and E, the opposite relationship is observed. This is further evidence that radio and optical emissions in the M87 jet come from substantially different physical regions. The delays observed in the inner jet are consistent with localized particle acceleration, with tacc<<tcoolt_{acc} << t_{cool} for optically emitting electrons in knots HST-1 and F, and tacctcoolt_{acc} \sim t_{cool} for optically emitting electrons in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots D, A and B, and somewhat lower values, νB10151016\nu_B \sim 10^{15}- 10^{16} Hz, in other regions. If X-ray emissions from knots A, B and D are co-spatial with optical and radio emission, we can strongly rule out the ``continuous injection'' model. Because of the short lifetimes of X-ray synchrotron emitting particles, the X-ray emission likely fills volumes much smaller than the optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap

    The build-up of the colour-magnitude relation in galaxy clusters since z~0.8

    Get PDF
    Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour-magnitude relation has evolved since z~0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high redshift EDisCS clusters exhibit a significant "deficit" of faint red galaxies. Combining clusters in three different redshift bins, and defining as `faint' all galaxies in the range 0.4 > L/L* > 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z~0.8 to z~0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour-magnitude diagram of high redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved onto the red-sequence below z~0.8.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling

    Full text link
    Molecular hydrogen has an important role in the early stages of star formation as well as in the production of many other molecules that have been detected in the interstellar medium. In this review we show that it is now possible to study the formation of molecular hydrogen in simulated astrophysical environments. Since the formation of molecular hydrogen is believed to take place on dust grains, we show that surface science techniques such as thermal desorption and time-of-flight can be used to measure the recombination efficiency, the kinetics of reaction and the dynamics of desorption. The analysis of the experimental results using rate equations gives useful insight on the mechanisms of reaction and yields values of parameters that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se
    corecore