2,383 research outputs found
Understanding Neurobiology of Psychological Trauma; Tips for Working with Transition-age Youth
This tip sheet introduces service providers to scientifically-informed findings about brain development and trauma specific to young adults and the implications for trauma-informed interventions and trauma-informed engagement of young people in services
Starvation-Associated Genome Restructuring Can Lead to Reproductive Isolation in Yeast
Knowledge of the mechanisms that lead to reproductive isolation is essential for understanding population structure and speciation. While several models have been advanced to explain post-mating reproductive isolation, experimental data supporting most are indirect. Laboratory investigations of this phenomenon are typically carried out under benign conditions, which result in low rates of genetic change unlikely to initiate reproductive isolation. Previously, we described an experimental system using the yeast Saccharomyces cerevisiae where starvation served as a proxy to any stress that decreases reproduction and/or survivorship. We showed that novel lineages with restructured genomes quickly emerged in starved populations, and that these survivors were more fit than their ancestors when re-starved. Here we show that certain yeast lineages that survive starvation have become reproductively isolated from their ancestor. We further demonstrate that reproductive isolation arises from genomic rearrangements, whose frequency in starving yeast is several orders of magnitude greater than an unstarved control. By contrast, the frequency of point mutations is less than 2-fold greater. In a particular case, we observe that a starved lineage becomes reproductively isolated as a direct result of the stress-related accumulation of a single chromosome. We recapitulate this result by demonstrating that introducing an extra copy of one or several chromosomes into naïve, i.e. unstarved, yeast significantly diminishes their fertility. This type of reproductive barrier, whether arising spontaneously or via genetic manipulation, can be removed by making a lineage euploid for the altered chromosomes. Our model provides direct genetic evidence that reproductive isolation can arise frequently in stressed populations via genome restructuring without the precondition of geographic isolation
Ketone bodies for the failing heart:fuels that can fix the engine?
Accumulating evidence suggests that the failing heart reverts energy metabolism toward increased utilization of ketone bodies. Despite many discrepancies in the literature, evidence from both bench and clinical research demonstrates beneficial effects of ketone bodies in heart failure. Ketone bodies are readily oxidized by cardiomyocytes and can provide ancillary fuel for the energy-starved failing heart. In addition, ketone bodies may help to restore cardiac function by mitigating inflammation, oxidative stress, and cardiac remodeling. In this review, we hypothesize that a therapeutic approach intended to restore cardiac metabolism through ketone bodies could both refuel and ‘repair’ the failing heart
Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators
It is shown that the requirements for high quality electron bunch generation
and trapping from an underdense photocathode in plasma wakefield accelerators
can be substantially relaxed through localizing it on a plasma density
downramp. This depresses the phase velocity of the accelerating electric field
until the generated electrons are in phase, allowing for trapping in shallow
trapping potentials. As a consequence the underdense photocathode technique is
applicable by a much larger number of accelerator facilities. Furthermore, dark
current generation is effectively suppressed.Comment: 4 pages, 3 figure
Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
Cardiac failure is a leading cause of age-related death, though its root cause remains unknown. Mounting evidence implicates a decline in mitochondrial function due to increased opening of the mitochondrial permeability transition pore (mPTP). Here we report that the NAD+-dependent deacetylase SIRT3 deacetylates the regulatory component of the mPTP, cyclophilin D (CypD) on lysine 166, adjacent to the binding site of cyclosporine A, a CypD inhibitor. Cardiac myocytes from mice lacking SIRT3 exhibit an age-dependent increase in mitochondrial swelling due to increased mPTP opening, a phenotype that is rescued by cyclosporine A. SIRT3 knockout mice show accelerated signs of aging in the heart including cardiac hypertrophy and fibrosis at 13 months of age. SIRT3 knockout mice are also hypersensitive to heart stress induced by transverse aortic constriction (TAC), as evidenced by cardiac hypertrophy, fibrosis, and increased mortality. Together, these data show for the first time that SIRT3 activity is necessary to prevent mitochondrial dysfunction and cardiac hypertrophy during aging and shed light on new pharmacological approaches to delaying aging and treating diseases in cardiac muscle and possibly other post-mitotic tissues
Recommended from our members
Ablation of SGK1 Impairs Endothelial Cell Migration and Tube Formation Leading to Decreased Neo-Angiogenesis Following Myocardial Infarction
Serum and glucocorticoid inducible kinase 1 (SGK1) plays a pivotal role in early angiogenesis during embryonic development. In this study, we sought to define the SGK1 downstream signalling pathways in the adult heart and to elucidate their role in cardiac neo-angiogenesis and wound healing after myocardial ischemia. To this end, we employed a viable SGK1 knockout mouse model generated in a 129/SvJ background. Ablation of SGK1 in these mice caused a significant decrease in phosphorylation of SGK1 target protein NDRG1, which correlated with alterations in NF-κB signalling and expression of its downstream target protein, VEGF-A. Disruption of these signalling pathways was accompanied by smaller heart and body size. Moreover, the lack of SGK1 led to defective endothelial cell (ECs) migration and tube formation in vitro, and increased scarring with decreased angiogenesis in vivo after myocardial infarct. This study underscores the importance of SGK1 signalling in cardiac neo-angiogenesis and wound healing after an ischemic insult in vivo
Recommended from our members
Three‐dimensional myocardial scarring along myofibers after coronary ischemia–reperfusion revealed by computerized images of histological assays
Abstract Adverse left ventricular (LV) remodeling after acute myocardial infarction is characterized by LV dilatation and development of a fibrotic scar, and is a critical factor for the prognosis of subsequent development of heart failure. Although myofiber organization is recognized as being important for preserving physiological cardiac function and structure, the anatomical features of injured myofibers during LV remodeling have not been fully defined. In a mouse model of ischemia–reperfusion (I/R) injury induced by left anterior descending coronary artery ligation, our previous histological assays demonstrated that broad fibrotic scarring extended from the initial infarct zone to the remote zone, and was clearly demarcated along midcircumferential myofibers. Additionally, no fibrosis was observed in longitudinal myofibers in the subendocardium and subepicardium. However, a histological analysis of tissue sections does not adequately indicate myofiber injury distribution throughout the entire heart. To address this, we investigated patterns of scar formation along myofibers using three‐dimensional (3D) images obtained from multiple tissue sections from mouse hearts subjected to I/R injury. The fibrotic scar area observed in the 3D images was consistent with the distribution of the midcircumferential myofibers. At the apex, the scar formation tracked along the myofibers in an incomplete C‐shaped ring that converged to a triangular shape toward the end. Our findings suggest that myocyte injury after transient coronary ligation extends along myofibers, rather than following the path of coronary arteries penetrating the myocardium. The injury pattern observed along myofibers after I/R injury could be used to predict prognoses for patients with myocardial infarction
- …