9,966 research outputs found

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most β\beta times any TT best responses, states with approximation ratio O(β)O(\beta) times the price of anarchy are reached after TloglognT \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of β\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant β\beta and very slow convergence for β=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    Selected new developments in asbestos immunotoxicity.

    Get PDF
    Research over the past three decades has shown that the mammalian immune system can be altered by the occupational exposure of asbestos. Early clinical studies generally focused on systemic observations of immune alteration such as the number and function of peripheral lymphocytes and monocytes. More recently as the regulatory influence of local immunity in health and disease becomes more defined, immunologic changes occurring in the lung, the primary target organ of asbestos, have been significant areas of investigation. This review will focus on recent studies that examine the influence of asbestos on pulmonary immunity as well as the role of host immune competence in asbestos-related disease

    Second-order gravitational self-force

    Get PDF
    We derive an expression for the second-order gravitational self-force that acts on a self-gravitating compact-object moving in a curved background spacetime. First we develop a new method of derivation and apply it to the derivation of the first-order gravitational self-force. Here we find that our result conforms with the previously derived expression. Next we generalize our method and derive a new expression for the second-order gravitational self-force. This study also has a practical motivation: The data analysis for the planned gravitational wave detector LISA requires construction of waveforms templates for the expected gravitational waves. Calculation of the two leading orders of the gravitational self-force will enable one to construct highly accurate waveform templates, which are needed for the data analysis of gravitational-waves that are emitted from extreme mass-ratio binaries.Comment: 35 page

    Investigating mechanisms of social support effectiveness: The case of locomotion motivation

    Get PDF
    Although social support can entail costs, individuals with a higher locomotion orientation, who are motivated to move and take action, benefit from support. In two dyadic studies, we tested whether perceived movement towards important goals would mediate the effect of recipients’ locomotion motivation on positive outcomes in support contexts. In Study 1, couples completed a 10-day diary and then recalled support interactions with their partner after the diary period. In Study 2, couples engaged in laboratory support interactions for important goals. Perceived goal movement mediated the effect of higher (vs. lower) locomotion on self-reported ratings and coder ratings of support outcomes. Higher locomotion recipients may benefit in support contexts because they perceive they can move smoothly towards their goals

    CLTs and asymptotic variance of time-sampled Markov chains

    Get PDF
    For a Markov transition kernel P and a probability distribution μ on nonnegative integers, a time-sampled Markov chain evolves according to the transition kernel Pμ = Σkμ(k)Pk. In this note we obtain CLT conditions for time-sampled Markov chains and derive a spectral formula for the asymptotic variance. Using these results we compare efficiency of Barker's and Metropolis algorithms in terms of asymptotic variance

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition

    Get PDF
    Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page
    corecore