30 research outputs found

    Promotion of Prescription Drugs to Consumers and Providers, 2001–2010

    Get PDF
    Background: Pharmaceutical firms heavily promote their products and may have changed marketing strategies in response to reductions in new product approvals, restrictions on some forms of promotion, and the expanding role of biologic therapies. Methods: We used descriptive analyses of annual cross-sectional data from 2001 through 2010 to examine direct-to-consumer advertising (DTCA) (Kantar Media) and provider-targeted promotion (IMS Health and SDI), including: (1) inflation-adjusted total promotion spending (andpercentofsales);(2)distributionbychannel(consumerv.provider);and(3)providerspecialtybothfortheindustryasawholeandfortopsellingbiologicandsmallmoleculetherapies.Results:Totalpromotionpeakedin2004atUS and percent of sales); (2) distribution by channel (consumer v. provider); and (3) provider specialty both for the industry as a whole and for top-selling biologic and small molecule therapies. Results: Total promotion peaked in 2004 at US36.1 billion (13.4% of sales). By 2010 it had declined to 27.7B(9.027.7B (9.0% of sales). Between 2006 and 2010, similar declines were seen for promotion to providers and DTCA (both by 25%). DTCA’s share of total promotion increased from 12% in 2002 to 18% in 2006, but then declined to 16% and remains highly concentrated. Number of products promoted to providers peaked in 2004 at over 3000, and then declined 20% by 2010. In contrast to top-selling small molecule therapies having an average of 370 million (8.8% of sales) spent on promotion, top biologics were promoted less, with only $33 million (1.4% of sales) spent per product. Little change occurred in the composition of promotion between primary care physicians and specialists from 2001–2010. Conclusions: These findings suggest that pharmaceutical companies have reduced promotion following changes in the pharmaceutical pipeline and patent expiry for several blockbuster drugs. Promotional strategies for biologic drugs differ substantially from small molecule therapies

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Development of the Organonitrogen Biodegradation Database: Teaching Bioinformatics and Collaborative Skills to Undergraduates during a Pandemic

    No full text
    Physical distancing and inaccessibility to laboratory facilities created an opportunity to transition undergraduate research experiences to remote, digital platforms, adding another level of pedagogy to their training. Basic bioinformatics skills together with critical analysis of scientific literature are essential for addressing research questions in modern biology. The work presented here describes a fully online, collaborative research experience created to allow undergraduate students to learn those skills. The research experience was focused on the development and implementation of the Organonitrogen Biodegradation Database (ONDB, z.umn.edu/ondb). The ONDB was developed to catalog information about the cost, chemical properties, and biodegradation potential of commonly used organonitrogen compounds. A cross-institutional team of undergraduate researchers worked in collaboration with two faculty members and a postdoctoral fellow to develop the database. Students carried out extensive online literature searches and used a biodegradation prediction website to research and represent the microbial catabolism of different organonitrogen compounds. Participants employed computational tools such as R, Shiny, and flexdashboard to construct the database pages and interactive web interface for the ONDB. Worksheets and forms were created to encourage other students and researchers to gather information about organonitrogen compounds and expand the database. Student progress was evaluated through biweekly project meetings, presentations, and a final reflection. The ONDB undergraduate research experience provided a platform for students to learn bioinformatics skills while simultaneously developing a teaching and research tool for others
    corecore