32 research outputs found
Application of a new methodology for coastal multi-hazard-assessment and management on the state of Karnataka, India
AbstractThis paper presents the application of a new methodology for coastal multi-hazard assessment & management under a changing global climate on the state of Karnataka, India. The recently published methodology termed the Coastal Hazard Wheel (CHW) is designed for local, regional and national hazard screening in areas with limited data availability, and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The application makes use of published geophysical data and remote sensing information and is showcasing how the CHW framework can be applied at a scale relevant for regional planning purposes. It uses a GIS approach to develop regional and sub-regional hazard maps as well as to produce relevant hazard risk data, and includes a discussion of uncertainties, limitations and management perspectives. The hazard assessment shows that 61 percent of Karnataka's coastline has a high or very high inherent hazard of erosion, making erosion the most prevalent coastal hazard. The hazards of flooding and salt water intrusion are also relatively widespread as 39 percent of Karnataka's coastline has a high or very high inherent hazard for both of these hazard types
Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti
AbstractThis paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti’s coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti’s sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths