253 research outputs found
Considerations Concerning the Contributions of Fundamental Particles to the Vacuum Energy Density
The covariant regularization of the contributions of fundamental particles to
the vacuum energy density is implemented in the Pauli-Villars, dimensional
regularization, and Feynman regulator frameworks. Rules of correspondence
between dimensional regularization and cutoff calculations are discussed.
Invoking the scale invariance of free field theories in the massless limit, as
well as consistency with the rules of correspondence, it is argued that quartic
divergencies are absent in the case of free fields, while it is shown that they
arise when interactions are present.Comment: 28 pages, 5 figure
Conformational changes in alpha 7 acetylcholine receptors underlying allosteric modulation by divalent cations
Abstract Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172
An Allosteric Modulator of 7 Nicotinic Receptors, N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea (PNU-120596), Causes Conformational Changes in the Extracellular Ligand Binding Domain Similar to Those Caused by Acetylcholine
Nicotinic acetylcholine receptors are implicated in several neuropsychiatric disorders, including nicotine addiction, Alzheimer's, schizophrenia, and depression. Therefore, they represent a critical molecular target for drug development and targeted therapeutic intervention. Understanding the molecular mechanisms by which allosteric modulators enhance activation of these receptors is crucial to the development of new drugs. We used the substituted cysteine accessibility method to study conformational changes induced by the positive allosteric modulator N-(5-chloro-2,4-dimethoxyphenyl)-N′-(5-methyl-3-isoxazolyl)-urea (PNU-120596) in the extracellular ligand binding domain of α7 nicotinic receptors carrying the L247T mutation. PNU-120596 caused changes in cysteine accessibility at the inner beta sheet, transition zone, and agonist binding site. These changes in accessibility are similar to but not identical to those caused by ACh alone. In particular, PNU-120596 induced changes in MTSEA accessibility at N170C (in the transition zone) that were substantially different from those evoked by acetylcholine (ACh). We found that PNU-120596 induced changes at position E172C in the absence of allosteric modulation. We identified a cysteine mutation of the agonist binding site (W148C) that exhibited an unexpected phenotype in which PNU-120596 acts as a full agonist. In this mutant, ACh-evoked currents were more sensitive to thiol modification than PNU-evoked currents, suggesting that PNU-120596 does not bind at unoccupied agonist-binding sites. Our results provide evidence that binding sites for PNU-120596 are not in the agonist-binding sites and demonstrate that positive allosteric modulators such as PNU-120596 enhance agonist-evoked gating of nicotinic receptors by eliciting conformational effects that are similar but nonidentical to the gating conformations promoted by ACh
Conformational changes in α7 acetylcholine receptors underlying allosteric modulation by divalent cations
Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh. Two sets of residues in the α7 acetylcholine receptor extracellular domain were mutated to cysteine and analyzed by measuring the rates of modification by the thiol-specific reagent 2-aminoethylmethane thiosulfonate. Using Ba2+ as a surrogate for Ca2+, we found a divalent-dependent decrease the modification rates of cysteine substitutions at M37 and M40, residues at which rates were also slowed by ACh. In contrast, Ba2+ had no significant effect at N52C, a residue where ACh increased the rate of modification. Thus divalent modulators cause some but not all of the conformational effects elicited by agonist. Cysteine substitution of either of two glutamates (E44 or E172), thought to participate in the divalent cation binding site, caused a loss of allosteric modulation, yet Ba2+ still had a significant effect on modification rates of these residues. In addition, the effect of Ba2+ at these residues did not appear to be due to direct occlusion. Our data demonstrate that modulation by divalent cations involves substantial conformational changes in the receptor extracellular domain. Our evidence also suggests the modulation occurs via a binding site distinct from one which includes either (or both) of the conserved glutamates at E44 or E172
- …