32,567 research outputs found

    Persistent currents in mesoscopic rings and boundary conformal field theory

    Full text link
    A tight-binding model of electron dynamics in mesoscopic normal rings is studied using boundary conformal field theory. The partition function is calculated in the low energy limit and the persistent current generated as a function of an external magnetic flux threading the ring is found. We study the cases where there are defects and electron-electron interactions separately. The same temperature scaling for the persistent current is found in each case, and the functional form can be fitted, with a high degree of accuracy, to experimental data.Comment: 6 pages, 4 enclosed postscript figure

    Interpretation of x-ray-absorption dichroism experiments

    Get PDF
    A rule is derived to use x-ray magnetic circular dichroism spectra to extract the magnetic moment of the conduction-band states with j= l -1/2 separately from those with j= l + 1/2 as a function of energy. This quantity is straightforward to determine from the electronic band structure. The rule is illustrated with an application to pure iron and to the random substitutional alloy Fe_{80}CO_{20}

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Fiber-optic sensors for aerospace electrical measurements: An update

    Get PDF
    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work

    Thermal-Structural Evaluation of TD Ni-20Cr Thermal Protection System Panels

    Get PDF
    The results of a thermal-structural test program to verify the performance of a metallic/radiative Thermal Protection System (TPS) under reentry conditions are presented. This TPS panel is suitable for multiple reentry, high L/D space vehicles, such as the NASA space shuttle, having surface temperatures up to 1200 C (2200 F). The TPS panel tested consists of a corrugation-stiffened, beaded-skin TD Ni-20Cr metallic heat shield backed by a flexible fibrous quartz and radiative shield insulative system. Test conditions simulated the critical heating and aerodynamic pressure environments expected during 100 repeated missions of a reentry vehicle. Temperatures were measured during each reentry cycle; heat-shield flatness surveys to measure permanent set of the metallic components were made every 10 cycles. The TPS panel, in spite of localized surface failures, performed its designated function

    High bat (Chiroptera) diversity in the Early Eocene of India

    Get PDF
    The geographic origin of bats is still unknown, and fossils of earliest bats are rare and poorly diversified, with, maybe, the exception of Europe. The earliest bats are recorded from the Early Eocene of North America, Europe, North Africa and Australia where they seem to appear suddenly and simultaneously. Until now, the oldest record in Asia was from the Middle Eocene. In this paper, we report the discovery of the oldest bat fauna of Asia dating from the Early Eocene of the Cambay Formation at Vastan Lignite Mine in Western India. The fossil taxa are described on the basis of well-preserved fragments of dentaries and lower teeth. The fauna is highly diversified and is represented by seven species belonging to seven genera and at least four families. Two genera and five species are new. Three species exhibit very primitive dental characters, whereas four others indicate more advanced states. Unexpectedly, this fauna presents strong affinities with the European faunas from the French Paris Basin and the German Messel locality. This could result from the limited fossil record of bats in Asia, but could also suggest new palaeobiogeographic scenarios involving the relative position of India during the Early Eocene

    The dissipative effect of thermal radiation loss in high-temperature dense plasmas

    Full text link
    A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behavior of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.Comment: 4 pages, 1 postscript figure included; RevTeX3.0, epsf.tex neede

    Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model

    Get PDF
    Neurofibrillary tangles are a feature of Alzheimer disease and other tauopathies, and while they are generally believed to be markers of neuronal pathology, there is little evidence evaluating whether tangles directly impact neuronal function. To investigate the response of cells in hippocampal circuits to complex behavioral stimuli, we used an environmental enrichment paradigm to induce expression of an immediate-early gene, Arc, in the rTg4510 mouse model of tauopathy. These mice reversibly overexpress P301L tau and exhibit substantial neurofibrillary tangle deposition, neuronal loss, and memory deficits. Employing fluorescent in situ hybridization to detect Arc mRNA, we found that rTg4510 mice have impaired hippocampal Arc expression both without stimulation and in response to environmental enrichment; this likely reflects the combination of functional impairments of existing neurons and loss of neurons. However, tangle-bearing cells were at least as likely as non-tangle-bearing neurons to exhibit Arc expression in response to enrichment. Transgene suppression with doxycycline for 6 weeks resulted in increased percentages of Arc-positive cells in rTg4510 brains compared to untreated transgenics, restoring enrichment-induced Arc mRNA levels to that of wild-type controls despite the continued presence of neurofibrillary pathology. We interpret these data to indicate that soluble tau contributes to impairment of hippocampal function, while tangles do not preclude neurons from responding in a functional circuit

    Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    Full text link
    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV

    Preserving Natural Science Collections: Chronicle of Our Environmental Heritage

    Get PDF
    This report recommends action in the areas outlined below. Strategies for implementation of each recommendation are presented in chapter three, Meeting the Challenge: Recommendations and Strategies. Stewardship of collections Public awareness Staffing, education, and training Technology transfer Conservation research Guidelines and standards of practic
    • …
    corecore