1,030 research outputs found
The Pioneer anomaly in the context of the braneworld scenario
We examine the Pioneer anomaly - a reported anomalous acceleration affecting
the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a
braneworld scenario. We show that effects due to the radion field cannot
account for the anomaly, but that a scalar field with an appropriate potential
is able to explain the phenomena. Implications and features of our solution are
analyzed.Comment: Final version to appear at Classical & Quantum Gravity. Plainlatex 19
page
Proteome Regulation during Olea europaea Fruit Development
Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process
The Event Horizon Telescope Image of the Quasar NRAO 530
We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication
Constraints on black-hole charges with the 2017 EHT observations of M87*
Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes
First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, SagittariusA* (SgrA*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 Me. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
Observation of strangeness enhancement with charmed mesons in high-multiplicity collisions at TeV
The production of prompt and mesons is measured by the LHCb
experiment in proton-lead () collisions in both the forward
() and backward () rapidity regions at a
nucleon-nucleon center-of-mass energy of TeV.
The nuclear modification factors of both and mesons are
determined as a function of transverse momentum, , and
rapidity. In addition, the to cross-section ratio is measured
as a function of the charged particle multiplicity in the event. An enhanced
to production in high-multiplicity events is observed for the
whole measured range, in particular at low
and backward rapidity, where the significance exceeds six standard deviations.
This constitutes the first observation of strangeness enhancement in charm
quark hadronization in high-multiplicity collisions. The results
are also qualitatively consistent with the presence of quark coalescence as an
additional charm quark hadronization mechanism in high-multiplicity proton-lead
collisions.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-021.html (LHCb
public pages
Search for violation in the phase space of decays with the energy test
A search for violation in and decays is reported.
The search is performed using an unbinned model-independent method known as the
energy test that probes local violation in the phase space of the
decays. The data analysed correspond to an integrated luminosity of
fb collected in proton-proton collisions by the LHCb experiment at
a centre-of-mass energy of ~TeV, amounting to approximately 950000
and 620000 signal candidates for the and modes, respectively. The
method is validated using
and decays, where
-violating effects are expected to be negligible, and using
background-enhanced regions of the signal decays. The results are consistent
with symmetry in both the and the decays, with
-values for the hypothesis of no violation of 70% and 66%,
respectively.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-019.html (LHCb
public pages
Observation of the decays
This paper reports the observation of the decays using proton-proton collision data collected by the
LHCb experiment, corresponding to an integrated luminosity of
. The branching fractions of these decays are measured
relative to the normalisation channel .
The meson is reconstructed in the
decay channel and the products of branching
fractions are measured to be The first uncertainty is
statistical, the second systematic, and the third arises from the uncertainty
of the branching fraction of the
normalisation channel. The last uncertainty in the result is due to
the limited knowledge of the fragmentation fraction ratio, . The
significance for the and signals is larger than
. The ratio of the helicity amplitudes which governs the angular
distribution of the decay
is determined from the data. The ratio of the - and -wave amplitudes is
found to be and its phase rad,
where the first uncertainty is statistical and the second systematic.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-014.html (LHCb
public pages
- …
