3,172 research outputs found

    Spin-Peierls-like phases in magnetoelastic J1−J2J_1-J_2 antiferromagnetic chain at 1/3 magnetization

    Get PDF
    We investigate elastic deformations of spin S=1/2S=1/2 antiferromagnetic J1−J2J_1-J_2 Heisenberg chains, at M=1/3M=1/3 magnetization, coupled to phonons in the adiabatic approximation. Using a bosonization approach we predict the existence of non-homogeneous trimerized magnetoelastic phases. A rich ground state phase diagram is found, including classical and quantum plateau states for the magnetic sector as well as inequivalent lattice deformations within each magnetic phase. The analytical results are supported by exact diagonalization of small clusters.Comment: 7 pages, 5 figure

    Nanogel formation of polymer solutions flowing through porous media

    Get PDF
    A gelation process was seen to occur when Boger fluids made from aqueous solutions of polyacrylamide (PAA) and NaCl flowed through porous media with certain characteristics. As these viscoelastic fluids flow through a porous medium, the pressure drop across the bed varies linearly with the flow rate, as also happens with Newtonian fluids. Above a critical flow rate, elastic effects set in and the pressure drop grows above the low-flow-rate linear regime. Increasing further the flow rate, a more dramatic increase in the slope of the pressure drop curve can be observed as a consequence of nanogel formation. In this work, we discuss the reasons for this gelation process based on our measurements using porous media of different sizes, porosity and chemical composition. Additionally, the rheological properties of the fluids were investigated for shear and extensional flows. The fluids were also tested as they flowed through different microfluidic analogues of the porous media. The results indicate that the nanogel inception occurs with the adsorption of PAA molecules on the surface of the porous media particles that contain silica on their surfaces. Subsequently, if the interparticle space is small enough a jamming process occurs leading to flow-induced gel formation

    Supersymmetric Barotropic FRW Model and Dark Energy

    Full text link
    Using the superfield approach we construct the n=2n=2 supersymmetric lagrangian for the FRW Universe with barotropic perfect fluid as matter field. The obtained supersymmetric algebra allowed us to take the square root of the Wheeler-DeWitt equation and solve the corresponding quantum constraint. This model leads to the relation between the vacuum energy density and the energy density of the dust matter.Comment: 11 pages, minor corrections, published versio

    Development of a testing protocol for oil solidifier effectiveness evaluation

    Get PDF
    Chemical countermeasures for oil spill remediation have to be evaluated and approved by the U.S. Environmental Protection Agency before they may be used to remove or control oil discharges. Solidifiers are chemical agents that change oil from a liquid to a solid by immobilizing the oil and bonding the liquid into a solid carpet-like mass with minimal volume increase. Currently, they are listed as Miscellaneous Oil Spill Control Agent in the National Contingency Plan and there is no protocol for evaluating their effectiveness. An investigation was conducted to test the oil removal efficiency of solidifiers using three newly developed testing protocols. The protocols were qualitatively and quantitatively evaluated to determine if they can satisfactorily differentiate effective and mediocre products while still accounting for experimental error. The repeatability of the three protocols was 15.9, 5.1, and 2.7 %. The protocol with the best performance involved measuring the amount of free oil remaining in the water after the solidified product was removed using an ultraviolet–visible spectrophotometer and it was adopted to study the effect of solidifier-to-oil mass ratio, mixing energy, salinity, and beaker size (i.e., area affected by the spill) on solidifier efficiency. Analysis of Variances were performed on the data collected and results indicated that the beaker size increased spreading, which reduced removal efficiency. Mixing speed appears to impart a ceiling effect with no additional benefit provided by the highest level over the middle level. Salinity was found to be mostly an insignificant factor on performance

    Observation of fractional quantum Hall effect in an InAs quantum well

    Full text link
    The two-dimensional electron system in an InAs quantum well has emerged as a prime candidate for hosting exotic quasi-particles with non-Abelian statistics such as Majorana fermions and parafermions. To attain its full promise, however, the electron system has to be clean enough to exhibit electron-electron interaction phenomena. Here we report the observation of fractional quantum Hall effect in a very low disorder InAs quantum well with a well-width of 24 nm, containing a two-dimensional electron system with a density n=7.8×1011n=7.8 \times 10^{11} cm−2^{-2} and low-temperature mobility 1.8×1061.8 \times 10^6 cm2^2/Vs. At a temperature of ≃35\simeq35 mK and B≃24B\simeq24 T, we observe a deep minimum in the longitudinal resistance, accompanied by a nearly quantized Hall plateau at Landau level filling factor ν=4/3\nu=4/3

    Biosorption of heavy metal and dyes : a promising technology leather wastewater treatment

    Get PDF
    The presence of dyes and heavy metals is usual in industrial processes like chrome tanning in tannery industry and their removal may be an environmental problem. Different techniques were developed and applied for the treatment of dyes and heavy metals in effluents. Among them, adsorption showed to be an economic, simple operation and an effective technique. Zeolites have a strong affinity for cations of transition metals, but only little affinity for anions and non-polar organic molecules. The application of a zeolite to heavy metal removal may be improved by the presence of microorganisms. The aim of this work is the treatment of an effluent containing dyes and toxic metals. Several operation parameters such as pH, concentration and kinetic behavior were studied. This innovative process for treating dyes and heavy metal effluents showed that the zeolite-biomass system is able to perform the removal of a combination of Azure B and chromium(VI). A mixture of dye and metal solutions was treated reaching a removal higher than 50% in the case of chromium (VI) and higher than 99% for dye, in 8 days

    Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye : chromium and azure B

    Get PDF
    A hybrid system combining the ion-exchange properties of a NaY zeolite and the characteristics of the bacterium Arthrobacter viscosus was investigated to treat polluted effluents with dye and toxic metals. In this study, the dye and the metal ion employed were a thiazine dye, Azure B, and chromium (VI), respectively. Initially, the removal of dye by the zeolite was tested. The analysis of dye equilibrium isotherms data was done using Langmuir, Freundlich, Sips and Redlich–Peterson models. Redlich–Peterson model gave the better fitting to data. In the dye adsorption studies, pseudo-second order kinetics showed the more reliable results. Operating at the optimised conditions in the treatment of single pollutants, a mixture of dye and metal solutions was treated reaching a removal higher than 50% for chromium (VI) and higher than 99% for dye, in 8 days.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT-Portugal) and Xunta de Galicia under programme 08MDS034 314PR. The authors are grateful to University of Vigo for financial support of the research of Emilio Rosales under a mobility grant

    Magnetic-field effects on transport in carbon nanotube junctions

    Full text link
    Here we address a theoretical study on the behaviour of electronic states of heterojunctions and quantum dots based on carbon nanotubes under magnetic fields. Emphasis is put on the analysis of the local density of states, the conductance, and on the characteristic curves of current versus voltage. The heterostructures are modeled by joining zigzag tubes through single pentagon-heptagon pair defects, and described within a simple tight binding calculation. The conductance is calculated using the Landauer formula in the Green functions formalism. The used theoretical approach incorporates the atomic details of the topological defects by performing an energy relaxation via Monte Carlo calculation. The effect of a magnetic field on the conductance gap of the system is investigated and compared to those of isolated constituent tubes. It is found that the conductance gap of the studied CNHs exhibits oscillations as a function of the magnetic flux. However, unlike the pristine tubes case, they are not Aharonov-Bohm periodic oscillations
    • …
    corecore