52 research outputs found
The dynamics of mitochondrial Ca2+ fluxes
AbstractWe have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5–10mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7μM, but its effect was hardly appreciable at 10μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range
Arrhythmic Effects Evaluated on <i>Caenorhabditis elegans</i>: The Case of Polypyrrole Nanoparticles
Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans) can bridge the gap between in vitro and vertebrate testing as they can provide extensive information on systemic toxicity and specific harmful effects through facile experimentation following 3R EU directives on animal use. Since the nematodes' pharynx shares similarities with the human heart, we assessed the general and pharyngeal effects of drugs and polypyrrole nanoparticles (Ppy NPs) using C. elegans. The evaluation of FDA-approved drugs, such as Propranolol and Racepinephrine reproduced the arrhythmic behavior reported in humans and supported the use of this small animal model. Consequently, Ppy NPs were evaluated due to their research interest in cardiac arrhythmia treatments. The NPs' biocompatibility was confirmed by assessing survival, growth and development, reproduction, and transgenerational toxicity in C. elegans. Interestingly, the NPs increased the pharyngeal pumping rate of C. elegans in two slow-pumping mutant strains, JD21 and DA464. Moreover, the NPs increased the pumping rate over time, which sustained up to a day post-excretion. By measuring pharyngeal calcium levels, we found that the impact of Ppy NPs on the pumping rate could be mediated through calcium signaling. Thus, evaluating arrhythmic effects in C. elegans offers a simple system to test drugs and nanoparticles, as elucidated through Ppy NPs
Inhibition of Sarco-Endoplasmic Reticulum Ca2+ ATPase Extends the Lifespan in C. elegans Worms
The sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) refills the endoplasmic reticulum (ER) with Ca2+ up to the millimolar range and is therefore the main controller of the ER [Ca2+] level ([Ca2+]ER), which has a key role in the modulation of cytosolic Ca2+ signaling and ER-mitochondria Ca2+ transfer. Given that both cytosolic and mitochondrial Ca2+ dynamics strongly interplay with energy metabolism and nutrient-sensitive pathways, both of them involved in the aging process, we have studied the effect of SERCA inhibitors on lifespan in C. elegans. We have used thapsigargin and 2,5-Di-tert-butylhydroquinone (2,5-BHQ) as SERCA inhibitors, and the inactive analog 2,6-Di-tert-butylhydroquinone (2,6-BHQ) as a control for 2,5-BHQ. Every drug was administered to the worms either directly in the agar or via an inclusion compound with γ-cyclodextrin. The results show that 2,6-BHQ produced a small but significant increase in survival, perhaps because of its antioxidant properties. However, 2,5-BHQ produced in all the conditions a much higher increase in lifespan, and the potent and specific SERCA inhibitor thapsigargin also extended the lifespan. The effects of 2,5-BHQ and thapsigargin had a bell-shaped concentration dependence, with a maximum effect at a certain dose and smaller or even toxic effects at higher concentrations. Our data show therefore that submaximal inhibition of SERCA pumps has a pro-longevity effect, suggesting that Ca2+ signaling plays an important role in the aging process and that it could be a promising novel target pathway to act on aging
SERCA inhibition improves lifespan and healthspan in a chemical model of Parkinson disease in Caenorhabditis elegans
Introduction: The high prevalence of neurodegenerative diseases in our population and the lack of effective treatments encourage the search for new therapeutic targets for these pathologies. We have recently described that submaximal inhibition of the Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA), the main responsible for ER calcium storage, is able to increase lifespan in Caenorhabditis elegans worms by mechanisms involving mitochondrial metabolism and nutrient-sensitive pathways.Methods: We have studied here the effects of submaximal SERCA inhibition in a chemical model of Parkinson’s disease (PD) induced in C. elegans worms by treatment with the mitochondrial complex I inhibitor rotenone. For specific SERCA inhibition, we treated worms with RNAi against sca-1, the sole orthologue of SERCA in C. elegans.Results and Discussion: Our results show that rotenone produces alterations in worms that include decreased lifespan, smaller size, reduced fertility, decreased motility, defecation and pumping rate, increased mitochondrial ROS production, reduced mitochondrial membrane potential and oxygen consumption rate, altered mitochondrial structure, and altered ethanol preference in behavioral studies. Most of these alterations were either fully or partially reversed in worms treated with sca-1 RNAi, suggesting that SERCA inhibition could be a novel pharmacological target in the prevention or treatment of neurodegeneration
The Neuroprotector Benzothiazepine CGP37157 Extends Lifespan in C. elegans Worms
The benzothiazepine CGP37157 has shown neuroprotective effects in several in vitro models of excitotoxicity involving dysregulation of intracellular Ca2+ homeostasis. Although its mechanism of neuroprotection is unclear, it is probably related with some of its effects on Ca2+ homeostasis. CGP37157 is a well-known inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX). However, it is not very specific and also blocks several other Ca2+ channels and transporters, including voltage-gated Ca2+ channels, plasma membrane Na+/Ca2+ exchanger and the Ca2+ homeostasis modulator 1 channel (CALHM1). In the present work, we have studied if CGP37157 could also induce changes in life expectancy. We now report that CGP37157 extends C. elegans lifespan by 10%–15% with a bell-shaped concentration-response, with high concentrations producing no effect. The effect was even larger (25% increase in life expectancy) in worms fed with heat-inactivated bacteria. The worm CGP37157 concentration producing maximum effect was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and was close to the IC50 for inhibition of the Na+/Ca2+ exchanger. CGP37157 also extended the lifespan in eat-2 mutants (a model for caloric restriction), suggesting that caloric restriction is not involved in the mechanism of lifespan extension. Actually, CGP37157 produced no effect in mutants of the TOR pathway (daf15/unc24) or the insulin/insulin-like growth factor-1 (IGF-1) pathway (daf-2), indicating that the effect involves these pathways. Moreover, CGP37157 was also ineffective in nuo-6 mutants, which have a defect in the mitochondrial respiratory chain complex I. Since it has been described that neuroprotection by this compound in cell cultures is abolished by mitochondrial inhibitors, this suggests that life extension in C. elegans and neuroprotection in cell cultures may share a similar mechanism involving mitochondria
- …