9,843 research outputs found
Double Compton effect with high intensity radiation
Double Compton effect with high intensity radiatio
Do People Make Strategic Moves? Experimental Evidence on Strategic Information Avoidance
The strategic commitment moves that game theory predicts players make may sometimes seem counter-intuitive. We therefore conducted an experiment to see if people make the predicted strategic move. The experiment uses a simple bargaining situation. A player can make a strategic move of committing to not seeing what another player will demand. Our data show that subjects do, but only after substantial time, learn to make the predicted strategic move. We find only weak evidence of physical timing effects.strategic moves; commitment; bargaining; strategic value of information; physical timing effects; endogenous timing; experiment
The lambda-dimension of commutative arithmetic rings
It is shown that every commutative arithmetic ring has -dimension
. An example of a commutative Kaplansky ring with -dimension 3
is given. If satisfies an additional condition then -dim(
Theoretical study of molecular electronic excitations and optical transitions of C60
We report results on ab initio calculations of excited states of the
fullerene molecule by using configuration interaction (CI) approach with singly
excited determinants (SCI). We have used both the experimental geometry and the
one optimized by the density functional method and worked with basis sets at
the cc-pVTZ and aug-cc-pVTZ level. Contrary to the early SCI semiempirical
calculations, we find that two lowest electron
optical lines are situated at relatively high energies of ~5.8 eV (214 nm) and
~6.3 eV (197 nm). These two lines originate from two transitions: from HOMO to (LUMO+1) () and from (HOMO--1)
to LUMO (). The lowest molecular excitation, which is the level, is found at ~2.5 eV. Inclusion of doubly excited determinants
(SDCI) leads only to minor corrections to this picture. We discuss possible
assignment of absorption bands at energies smaller than 5.8 eV (or
larger than 214 nm).Comment: 6 pages, 1 figure, 9 Table
Nonlinear coupling of continuous variables at the single quantum level
We experimentally investigate nonlinear couplings between vibrational modes
of strings of cold ions stored in linear ion traps. The nonlinearity is caused
by the ions' Coulomb interaction and gives rise to a Kerr-type interaction
Hamiltonian H = n_r*n_s, where n_r,n_s are phonon number operators of two
interacting vibrational modes. We precisely measure the resulting oscillation
frequency shift and observe a collapse and revival of the contrast in a Ramsey
experiment. Implications for ion trap experiments aiming at high-fidelity
quantum gate operations are discussed
Geometric phase gate on an optical transition for ion trap quantum computation
We propose a geometric phase gate of two ion qubits that are encoded in two
levels linked by an optical dipole-forbidden transition. Compared to hyperfine
geometric phase gates mediated by electric dipole transitions, the gate has
many interesting properties, such as very low spontaneous emission rates,
applicability to magnetic field insensitive states, and use of a co-propagating
laser beam geometry. We estimate that current technology allows for
infidelities of around 10.Comment: 4 pages, 2 figure
- âŚ